
www.manaraa.com



www.manaraa.com

Inverse and Crack Identification Problems in Engineering Mechanics 



www.manaraa.com

Applied Optimization 

Volume 46 

Series Editors: 

Panos M. Pardalos 
University of Florida, U.S.A. 

Donald Hearn 
University of Florida, U.S.A. 

The titles published in this series are listed at the end of this volume. 



www.manaraa.com

Inverse and Crack 
Identification Problems in 
Engineering Mechanics 

by 

Georgios E. Stavroulakis 
Institute of Applied Mathematics, 
Department of Civil Engineering, 
Technical University Caro/o Wilhelmina, 
Braunschweig, Germany 

Springer-Science+Business Media, B.V. 



www.manaraa.com

A C.I.P. Catalogue record for this book is available from the Library of Congress. 

Printed on acid-free paper 

AII Rights Reserved 
© 2001 Springer Science+Business Media Dordrecht 
Originally pub1ished by K1uwer Academic Pub1ishers in 2001 
No part ofthe material protected by this copyright notice may be reproduced or 
utilized in any form or by any means, electronic or mechanical, 
including photocopying, recording or by any information storage and 
retrieval system, without written permission from the copyright owner 

ISBN 978-1-4613-4888-7 ISBN 978-1-4615-0019-3 (eBook) 
DOI 10.1007/978-1-4615-0019-3 



www.manaraa.com

This book is dedicated 
to my parents 



www.manaraa.com

Contents 

Preface xi 

Part I Introduction. Problem Description 

1. DIRECT AND INVERSE PROBLEMS 
1.1 Introduction 

3 
3 
3 
4 
5 

1.2 Direct nonsmooth mechanics problems 
1.3 Inverse and identification problems 
I .4 Recent results and future work 

References 

Part II Theoretical and Computational Tools 

2. COMPUTATIONAL MECHANICS I I 
2.1 Elastostatics I I 

2.1.1 Small displacement smooth (classical) elastostatics. 12 
2.1.2 Unilateral contact problems. 15 

2.1.2. I The unilateral contact conditions 19 
2. 1.3 Friction problems with convex energy potential 2 I 

2. 1.3. I Combined frictional contact problem 23 
2.1.4 BEM formulation and implementation 24 

2.1.4.1 BEM formulation of unilateral problems 24 
2.1.4.2 LCP-BEM static unilateral-frictional contact 

problems 26 
2.1.4.3 Multi-region BEM formulation for inequality 

problems 27 
2. 1.4.4 Unified LCPformulation of combined unilateral 

frictional contact problems 29 
2.2 Solution algorithms 32 

2.2. I Smooth and nonsmooth optimization approach 32 
2.2.2 QPP and LCP solution schemes 34 
2.2.3 Nonlinear equations for complementerity problems 34 

2.2.3. I Nonlinear equation reformulation 36 

Vll 



www.manaraa.com

viii INVERSE AND CRACK IDENTIFICATION 

2.2.3.2 
2.2.3.3 
2.2.3.4 
2.2.3.5 

2.2.3.6 

Examples of NCP functions 36 
Merit functions 37 
Solution technique 37 
Formulation of nonlinear equations with FEM 
andBEM 38 
NCP functions proposed in the engineering 
literature 40 

2.3 Elastodynamics 41 
2.3.1 Steady state, harmonic problems 41 
2.3.2 Transient elastodynamics 43 

2.3.2.1 LCP-BEM dynamic unilateral-frictional contact 
problems 45 

References 

3. COMPUTATIONAL AND STRUCTURAL OPTIMIZATION 55 
3.1 Optimization and optimality conditions 55 

3.1.1 Smooth, inequality constrained, convex problems 58 
3.1.1.1 Lagrangians, saddle points, duality 59 
3.1.1.2 Concise form of optimality conditions 61 

3.1.2 Convex, nonsmooth optimization 62 
3.1.2.1 Unconstrained 62 
3.1.2.2 Constrained 62 

3.1.3 Convex optimization algorithms 63 
3.1.3.1 Smooth Unconstrained Problems 63 
3.1.3.2 Constrained Problems 64 
3.1.3.3 Nonsmooth Problems 67 

3.2 Optimization under equilibrium constraints (MPEC) 68 
3.2.1 Formulation 69 
3.2.2 Examples of structural optimization 71 

3.2.2.1 Optimal design for structures 71 
3.2.2.2 Optimal design for unilateral structures 71 
3.2.2.3 Optimal prestress of unilateral Structures 72 
3.2.2.4 Geometry design, inverse or identification 

problem 73 
3.2.2.5 Nonsmoothness and nonconvexity in MPEC 74 

3.2.3 Solution methods 76 
3.2.3.1 Error minimization with regularization 76 
3.2.3.2 Error minimization - regularization - nonlinear 

equation approach 77 
3.2.3.3 Error minimization - penalty formulation 77 
3.2.3.4 Error minimization - regularization -nonlinear 

equation approach - penalty formulation 78 
3.2.3.5 Further numerical approaches 78 

References 

4. SELECTED SOFT COMPUTING TOOLS 85 
85 
86 
86 

4.1 Soft-computing versus classical computing 
4.2 Neural networks 

4.2.1 Backpropagation neural network model 



www.manaraa.com

Contents ix 

4.2.2 Neural network mappings, motivation and application 
on inverse problems 89 

4.3 Genetic algorithms 92 
4.4 Fuzzy and neuro-fuzzy inference 95 
4.5 Classical and extended Kalman filter and identification 96 

4.5.l Review 96 
4.5.2 Description 97 

References 

Part III Applications to Inverse Problems 

5. STATIC PROBLEMS 107 
5.1 Introduction and literature survey 107 

. 5.2 Output error formulation of the inverse problem 110 
5.2.l Local optimization approach 112 
5.2.2 Neural network solution method 112 

5.3 Numerical examples of direct problems 114 
5.3.1 Static unilateral crack analysis 118 

5.4 Numerical examples of inverse problems 124 
5.4.1 Flaw identification 124 
5.4.2 Bilateral and unilateral crack identification through error 

optimization 133 
5.4.3 Classical and unilateral neural crack identification 135 
5.4.4 Filter-driven iterative crack identification 147 

References 

6. STEADY-STATE DYNAMICS 
6.1 Introduction and literature survey 
6.2 Output error formulation of the inverse problem 
6.3 Neural network solution of the Inverse Problem 
6.4 Numerical examples 

6.4.1 Flaw identification 
6.4.2 Crack identification 

6.4.2.1 Direct problem 
6.4.2.2 Inverse problem 

References 

7. TRANSIENT DYNAMICS 
7.1 Introduction and literature survey 
7.2 Numerical examples of direct problems 
7.3 Numerical examples of inverse problems 

7.3.l Classical and unilateral impact-echo 
7.3.1.1 Outline of the method 
7.3.1.2 Numerical comparison 

7.3.2 Impact-echo and neural identification 
References 

157 
157 
159 
160 
161 
161 
168 
168 
171 

187 
187 
189 
202 
202 
202 
203 
204 



www.manaraa.com

Preface 

The present book summarises the research work of the author at the In­
stitute of Applied Mechanics of the Technical University Carolo Wilhelmina 
in Braunschweig during the last four years. The book constitutes the written 
Thesis which has been submitted to partially fulfill the requirements for the 
Habilitation degree at the same University. 

The author would like to express his graditude to Prof. Dr.rer.nat. Heinz 
Antes, Technische UniversiHit Carolo Wilhelmina zu Braunschweig, for his 
generous support throughout this work and for engouraging the application for 
the Habilitation degree. 

Thanks are also expressed to Prof. Dr.-Ing. Dietmar Gross, from the Tech­
nische Universitat Darmstadt, and to Prof. Dr.-Ing. Josef Ballmann, from 
the Rheinisch-WestfaIische Technische Hochschule Aachen for accepting the 
responsibility to act as referees during the Habilitation procedure. 

The author can not forget that this project has been proposed and supported 
by his teacher, the late Professor Panagiotis D. Panagiotopoulos, Aristotle Uni­
versity, Thessaloniki and RWTH Aachen. 

Finally, the financial support given by the State of Lower Saxony in the form 
of a Scientific Assistant position, and the support of the authors' family, to 
whom this book is dedicated, are gratefully acknowledged. 

xi 

GEORGIOS E, STAVROULAKIS 

BRAUNSCHWEIG, JULY 2000 



www.manaraa.com

Das vorliegende Buch ist vom Fachbereich Bauingenieurwesen der Technis­
chen Universitat Carolo Wilhelmina zu Braunschweig als Habilitationsschrift 
angenommen worden. Die "venia legendi" fUr das Fachgebiet "Mechanik" 
wurde am 29. Juni 2000 erworben. 

The present book has been accepted as Habilitation Thesis from the Depart­
ment of Civil Engineering of the Technical University Carolo Wilhelmina at 
Braunschweig. The "venia legendi" for the scientific area of "Mechanics" was 
given on 29th of June 2000. 

xiii 



www.manaraa.com

I 

INTRODUCTION. PROBLEM DESCRIPTION 



www.manaraa.com

Chapter 1 

DIRECT AND INVERSE PROBLEMS 
IN MECHANICS AND APPLICATIONS 

1.1 INTRODUCTION 

The purpose of this work is to study a class of inverse problems arising in 
mechanics, with emphasis on inverse problems of inequality or nonsmooth me­
chanics. The application concerns crack identification where static and dynamic 
problems are considered. Unilateral problems are tightly connected with the 
theory of variational inequalities and with complementarity problems. Inverse 
problems are considered as error minimization problems. This approach shares 
many common elements with the study of optimal design problems. In turn, 
since one deals with optimization of systems governed by variational inequali­
ties or complementarity problems, questions pertaining to nondifferentiability 
and nonconvexity of the studied problems, with all related complications, arise. 
Solution to practical examples are thus provided by means of classical opti­
mization algorithms or less classical soft computing techniques. 

1.2 DIRECT NONSMOOTH MECHANICS PROBLEMS 
Inequality or nonsmooth mechanics deal with problems which involve in­

equality and complementarity relations in their constitutive laws or in the bound­
ary conditions. A typical example of this situation arises in the problem of 
unilateral contact, where some contact stress must be compressive or zero, the 
corresponding gap must be possitive (for separation) or zero (in the case of 
contact) and at the same time only one out of these two quantities may be 
nonzero. 

The treatment of inequality constraints is a well studied task in optimization 
and in mathematical programming. The either-or complementarity condition 
relates the activation of some inequality constraints with the appearance of the 
corresponding (nonzero) Lagrange multiplier. In a more general context, one 

3 
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may consider minimization problems for nondifferentiable, i.e., nonsmooth, 
functions. Inequalities and complementarity relations arise in this context at 
the points of nondifferentiability (kinks) and concern the activation or deac­
tivation of the various smooth branches which form the nonsmooth function. 
In mechanics one considers, for instance, problems with nonsmooth poten­
tial energy functions. Problems of this type belong to the area of nonsmooth 
mechanics [Panagiotopoulos, 1985], [Moreau et aI., 1988], [Moreau and Pana­
giotopoulos, 1988], [Antes and Panagiotopoulos, 1992], [Pfeiffer and Glocker, 
1996], [Brogliato, 1999]. 

For the solution of the direct problem involving elastic structures with cracks 
various boundary element techniques are used for static and dynamic problems. 
When contact, friction and adhesion effects are considered, they are mostly 
treated by methods of inequality mechanics. These techniques are based on 
linear and nonlinear complementarity problems. Alternatively, an appropriate 
equivalent system of equations which enforce the previous relations by means 
of specialized penalty or smoothing functions may be used. 

Boundary element techniques are very advantageous for the automatic analy­
sis and reanalysis of structures, because they require less effort for the discretiza­
tion and the numerical solution of the mechanical problem. This is important 
for the study of inverse problems where one must solve several test structures, 
possibly under the action of more than one loading cases. For example, in crack 
identification, one should place the crack in several positions, solve the corre­
sponding mechanical problems and continue with the comparison of the results 
as it is dictated by the specific solution method. Of course, one may use other 
discretization techniques for the solution of the direct mechanical problem, 
provided that a suitable and effective system for the automatic parametrization, 
discretization and solution of the problem is available. It is obvious that one can 
not generate the various test problems, discretize and solve them and evaluate 
the results manually, as it is required for the solution of an inverse problem. 

1.3 INVERSE AND IDENTIFICATION PROBLEMS 
Inverse problems in mechanics, in particular for inequality or nonsmooth me­

chanics' applications, are, in principle, formulated as a least square output error 
minimization problem [Natke, 1991]. In the framework of a potential energy 
optimization formulation of the mechanical problem, one deals with general­
ized bilevel programming problems where the upper level consists of the error 
minimization problem and the lower level is the mechanical problem itself. The 
appearance of the above mentioned inequality constraints and, in particular, of 
the complementarity relations makes this bilevel programming problem non­
differentiable and nonconvex. In mechanics, the nonconvexity of optimization 
problems for structures which include complementarity relations has been rec­
ognized early by the research group of Prof. Maier. They studied optimal design 
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for unilateral structures [Giannessi et aI., 1978], [Giannessi et aI., 1982] and 
identification problems for elastoplastic structures [Maier et aI., 1982], [Maier, 
1982]. Recently, a series of mathematical investigations and applications in 
mechanics have been published. For this class of optimization problem, the 
term MPEC (mathematical programs under equilibrium constraints) has been 
proposed. 

In this work, effective methods for both the direct and the inverse problems 
will be described and numerically tested. They will be applied on the direct 
and inverse crack and flaw identification problems, for static, harmonic and 
transient elastodynamic problems, with and without contact, friction, and ad­
hesive effects. The direct problem will, in general, be formulated and solved 
by appropriate use of boundary element techniques combined with specialized 
algorithms from the area of nonsmooth and contact mechanics. Effective im­
plementation and parametrization of the structural analysis problem is a key 
issue for the development and testing of various methods for the solution of 
the inverse, identification problem. For this latter problem several optimization 
techniques will be tested. They include classical optimization techniques and 
soft computing approaches based on neural networks, genetic algorithms and 
filter techniques. 

1.4 RECENT RESULTS AND FUTURE WORK 
A number of research results from previous publications of the author and of 

other researchers have been used in this work. The innovative aspects included 
in this thesis together with proposals for further work in this area are outlined 
here. 

Effective and automatic modelling and solution of inequality mechanics 
problems for static and dynamic loadings using boundary element techniques 
and linear or nonlinear complementarity approaches is feasible and has been 
done for two-dimensional elastic structures including cracks, flaws, and in­
clusions with linear and nonlinear interaction effects. The boundary element 
method has certain advantages, since it requires less effort for the discretization 
and provides enhanced accuracy in the results. This is required for extensive 
investigation of solution methods for the inverse problems. Extension to three­
dimensional problems or problems with restricted nonlinear behaviour in the 
interior of the body should not present additional difficulties. If required, effec­
tive methods for the coupling of finite element and boundary element techniques 
can also be used. Finally, parallelization of the involved numerical procedures 
may also be advantageous in certain computer environments. 

An extensive computer implementation and parametric investigation of vari­
ous numerical techniques forthe solution of the nonlinear least squares problems 
which arise during the study of the inverse (here, crack) identification problems 
has been performed. They include local and global optimization techniques and 
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soft computing methods. Recent results from the area of structural optimization 
and from more classical inverse problems are used. The optimization routines 
are either home-made programs or are taken from mathematical libraries (e.g., 
NAG) or from matrix analysis software packages (e.g., MATLAB). The per­
formance of the applied methods is demonstrated by numerical results. The 
developed computer programs are available for further testing and implemen­
tation of other optimization techniques in the future. 

The obtained results of the concrete model applications have practical im­
portance for crack and flaw identification problems arising in quality control of 
structures and structural components in connection with nondestructive testing 
and structural health monitoring techniques. Since the here presented study 
is theoretical and computer oriented, it is appropriate for the accomplishment 
of feasibility studies in this area. Further development and comparison with 
experimental measurements lies beyond the scope of this work and is left open 
for future investigations. 
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Chapter 2 

COMPUTATIONAL MECHANICS 

2.1 ELASTOSTATICS 

A systematic way for the derivation of variational principles in mechanics 
goes through the consideration of a potential energy or of a complementary 
energy function. The classical set of possibly nonlinear equations of mechanics 
from the one side, i.e., the compatibility equations, the eqUilibrium equations 
and the material laws, and, from the other side, the optimality conditions of 
the mathematical optimization theory are integrated in this approach. In fact, 
the governing relations of the problem either are taken into account in the 
derivation of the problem or they are produced from the optimality conditions 
of the associated energy optimization problem. 

For classical systems without inequality constraints and for smooth (dif­
ferentiable) potential functions, the necessary optimality conditions, i.e., the 
well-known relation that the gradient of the potential energy should be equal to 
zero at the optimum, lead to the governing relations of the mechanical problem. 
In the variational formulation, the link is provided through the requirement that 
the directional derivative of the potential energy must be equal to zero for all 
directions emanating from the solution (i.e., the equilibrium) point. The latter 
statement means that the product of the gradient of the potential energy with the 
small (virtual) variations ofthe functions' argument is zero and leads to a vari­
ational equality problem. For historical reasons and since the most frequently 
used function is the potential energy function of a system written in terms of 
displacement variables and the gradient of the same function plays the role of 
a stress or force vector, the above mentioned relation is called the principle of 
virtual work. In a dynamic analysis framework where the potential is expressed 
in terms of velocities, the term principle of virtual power is used instead. 

11 
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Convex differentiable potentials are very favourable with respect to the pre­
viously outlined optimization approach to structural analysis. For instance, 
linear elastic (or linearized) problems can be produced from quadratic potential 
energy functions which, if instabilities are excluded, are convex functions. 

In the presence of inequality constraints or of nondifferentiable potentials, 
the above method requires certain modifications. The optimality condition 
for a convex nondifferentiable function is no more a simple equation. It is a 
set-valued equation or a convex differential inclusion, where the set-valued 
generalization of the classical gradient, the subdifferential of convex analysis, 
appears. Equivalently, the directional derivative of a nondifferentiable function 
cannot be written as a linear function of the virtual variations (the direction) 
or, in the presence of inequality restrictions in the space of configuration vari­
ables, not all variations are permitted. Thus, variational inequality problems 
are formulated. One may choose a mixed formulation with inequalities and 
complementarity relations and formulate complementarity problems. Unilat­
eral contact problems are typical examples of structural analysis problems with 
kinematic inequality constraints which physically describe the no-penetration 
restriction of the unilateral contact mechanism. In this context, the correspond­
ing contact stresses obey to inequality restrictions, while complementarity ap­
pears since the simultaneous appearance of a positive gap with a nonzero contact 
stress is not allowed. Nondifferentiable potentials, the so-called superpoten­
tials, arise in multi-modulus elasticity problems, in holonomic (or step-wise 
holonomic) plasticity models, in static friction problems etc. (see, e.g., [Duvaut 
and Lions, 1972], [Moreau, 1975], [Panagiotopoulos, 1985], [Mistakidis and 
Stavroulakis, 1998]). 

2.1.1 SMALL DISPLACEMENT SMOOTH 
(CLASSICAL) ELASTOSTATICS. 

A small displacement elastostatic problem is considered here. An elastic 
structure occupying a region n c R n , n = 2,3 , with boundary denoted by r 
is considered. The structure is referred to the orthogonal Cartesian coordinate 
system OXIX2(X3). The purpose of this Section is to outline the variational and 
potential formulation of the elastostatic analysis problem under the hypothesis 
of small displacements (Le. the kinematics are linearized) and with linear and 
nonlinear elastic material laws. The link with the convex (quadratic for linear 
material) optimization is pointed out. 

The structure is discretized by means of ml finite elements and the stress and 
deformation vectors of the finite element assemblage are denoted by s, e with 
elements denoted by Si, ei, i = 1, ... ,m. Here m depends on the number of 
independent stress (resp. strains) of each finite element of the structure (natural 
stresses and strains in the sense of [Argyris, 1965]). Moreover, let u be the n-
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dimensional vector of nodal displacements and p be the energy corresponding 
n-dimensional vector of nodal forces. 

The static analysis problem is described by the following relations: 

• Stress equilibrium equations: 

Gs=p (2.1) 

where G is the equilibrium matrix of the discretized structure. 

• Strain-displacements compatibility equations: 

e= GTu. (2.2) 

• Linear material constitutive law for the structure: 

e = eo + Cs, (2.3) 

or 
s = S(e - eo). (2.4) 

Here C and S = C -1 are the natural and stiffness flexibility matrices of the 
unassembled structure and eo is the initial deformation vector. 

• Classical equality boundary conditions written in the general form: 

Eu= Uo (2.5) 

and 
Zs = F (2.6) 

where E and Z are appropriately defined transformation matrices and uo, 
F denote the known nodal boundary displacements (support) and boundary 
loading (traction). 

The virtual work for the discretized structure expresses the equality between 
the work produced by the internal stresses and the work of the external loading, 
and takes the form: 

sT(e* - e) = pT(u* - u), 'v'e*, u*, S.t. (2.2), (2.5) hold, (2.7) 

while the complementary virtual work involves variations of the stresses and 
reads: 

eT(s* - s) = uT(p* - p) , 'v's*,p* S.t. (2.1), (2.6) hold. (2.8) 
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By using the linear elasticity law (2.4) in the virtual work equation (2.7), and 
by virtue of (2.2) one gets the variational inequality: 

uTKT(u* - u) - (p + GSeo)T(u* - u) = 0, 

'v'u* E Vad = {v E 1Rn I (2.5) hold}. (2.9) 

Here K = GSGT denotes the stiffness matrix of the structure and p = p + 
GSeo is the nodal equivalent loading vector (including initial deformations' 
effects). 

For a stress based formulation (force method) the elasticity law is used in 
the form of (2.3) and the boundary conditions (2.6). By analogous reasoning, 
one gets from (2.3) the complementary virtual work equality: 

(eo + scf (8* - s) =0, 'v'S* E ~ad = {s E 1Rn I (2.6) hold}. (2.10) 

Note that due to the linearity of the equilibrium and of the compatibility equa­
tions (2.1) , (2.2) and due to the linearity of the material constitutive law (2.3) 
(or (2.4)), the previous variational problems involve linear and bilinear terms. 
Accordingly, both the potential energy optimization problem and the comple­
mentary energy optimization problem involve linear and quadratic constituents. 
The two potential minimization problems read: 

Find u E Vad such that: 

rr(u) = min {rr(v) = -21 vTKv - pT v} . (2.11) 
VEVad 

Find s E ~ad such that: 

rrC(s) = min {rrC(t) = ~tTCt + eat}. (2.12) 
tE2:ad 2 

One may easily verify that problem (2.7) (resp. (2.10)) actually expresses 
the minimality conditions for the energy optimization problem (2.11) (resp. 
(2.12)). Moreover, by means of the convex analysis duality theory it is possible 
to show that (2.11) and (2.12) are connected to each other in the sense that 
the potential energy function rr is the convex conjugate of the complementary 
energy function rrc and vice versa (see, e.g., [Panagiotopoulos, 1985], Chapt. 
62, [Zeidler, 1988]). 

Recall that, due to the physical restriction that a material element subjected 
to a deformation history cannot produce energy, matrices 5, C are symmetric 
and positive semidefinite. Moreover, the stiffness matrix K = G5GT has the 
same properties. In practice, if sufficient support boundary conditions (2.5) 
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exist so that all rigid body displacements and rotations are excluded, one uses 
this information to reduce the degrees of freedom of the structure. The arising 
effective stiffness matrix Kef is then positive definite. The latter properties 
guarantee that the optimization problems (2.11)-(2.12) are convex problems 
(and strictly convex for a sufficiently supported structure). 

Finally one should mention that relation (2.9) is equivalent to the more fa­
miliar system of linear equations: 

Ku=p+GSeo· (2.13) 

2.1.2 UNILATERAL CONTACT PROBLEMS. 
As a model, a two-dimensional discretized elastic structure with interfaces 

is considered. This framework is general since interfaces may be replaced by 
boundary conditions (seen as interfaces with a rigid support). Without loss of 
generality a structure consisting of two parts, [21 (resp. [22), with boundaries 
r 1 (resp. r 2) and an interface r(1.2) connecting them, is considered. A right­
hand Cartesian orthogonal coordinate system OX1X2 is used throughout. In 
the framework of a small displacement and small deformation theory, a simple, 
node-to-node collocation type technique is used to model the interface relative 
displacement vs. the interface traction mechanical behaviour. Possible non­
linearities of the problem are restricted to the interfaces and are of a unilateral 
type in this Section. 

The mechanical behaviour of each couple of nodes along the interface is 
considered separately in the normal and in the tangential to the interface direc­
tion. Thus, interface laws between the relative normal interface displacements 
[UlN E R and the normal interface tractions -SN E R and between the tan­
gential interface displacements [UlT E R and the tangential interface tractions 
- ST E R are considered. Concerning the positive sign conventions, S N, [u 1 N 
are referred to the outward unit normal to the interface, whereas ST, [UlT are 
perpendicular to the N direction, such as to form a local N, T -right-handed 
coordinate system. 

As in the previous Section, let the structure be discretized by means of m1 

finite elements and let the stress and deformation vectors of the finite element 
assemblage be denoted by Si, ei, i = 1, . .. ,m. Here, m depends on the number 
of independent stresses (resp. strains) of each finite element of the structure. Let 
u be the n-dimensional vector of nodal displacements (the degrees of freedom 
in the displacement method) and p be the energy corresponding n-dimensional 
vector of nodal forces. The discrete interface quantities are assembled in the 
q-dimensional vectors SN, ST and [ul N, [ulT respectively, where q is the 
number of couples of nodes which model the interface of the structure. For the 
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whole structure (including the interfaces), the enlarged stress s and deformation 
vectors e read: 

The static analysis problem is described by the following relations: 

• Stress equilibrium equations: 

(2.14) 

(2.15) 

where G is the equilibrium matrix of the discretized structure and G is 
the enlarged equilibrium matrix such as to take into account the interface 
tractions SN and ST. 

• Strain-displacements compatibility equations: 

e = GT u or explicitly [ [U1N 1 l g~ 1 U. 

[ul T GT 

(2.16) 

• Linear material constitutive law for the structure (outside of the interface): 

e = eo + Cs, (2.17) 

or 
s = S(e - eo). (2.18) 

Here C and S = C-1 are the natural and stiffness flexibility matrices of the 
unassembled structure and eo is the initial deformation vector. 

• Monotone interface laws (decomposed normally and tangentially to the in­
terface) in the general subdifferential form 

(2.19) 

or 
(2.20) 

Here <PaU, ¢a(-), a = N, T are convex potential energy functions which 
produce the pointwise interface laws. After integration, for the whole inter­
face, we get the potentials: 

q 

<pa(u) = L<p~i)([ula), a = N,T, (2.21) 
i=l 
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and 
- ~-(i) 
<I>a(S) = L..J ¢a (-Sa), a = N, T. (2.22) 

i=l 

Note here that the same interface law can be equivalently expressed by (2.19) 
or (2.20), after choosing ¢ = ¢c, where ¢c is the convex conjugate function 
of ¢(.). 

• Classical equality boundary conditions written in the general fonn: 

Eu= Uo (2.23) 

and 
Zs =F (2.24) 

where E and Z are appropriately defined transfonnation matrices and uo, 
F denote the known nodal boundary displacements (support) and boundary 
loading (traction), respectively. 

For the variational fonnulations ofthe problem, the virtual work equation and 
the complementary virtual work equation are also needed in their discretized 
fonn. According to the previous Section, both are variational equalities. The 
virtual work equation involves variations of the displacements and reads: 

sT(e* - e) = pT(u* - u) + S~([ul;" - [ul N) + S~([ul~ - [ulT)' 
Ve*, u*, [u];", [u]; s.t. (2.16), (2.23) hold. (2.25) 

The complementary virtual work involves variations of the stresses and reads: 

eT(s* - s) = uT(p* - p) + [ul~(Siv - SN) + [ul~(Sr - ST), 

Vp*, sT, Siv, Sr s.t. (2.15), (2.24) hold. (2.26) 

Let us first consider the displacement (or direct) analysis method. Therefore, 
the elasticity law (2.17) is introduced into the virtual work equation (2.25), and 
by using (2.16) leads to: 

uTKT(u* - u) - (p + GSeof(u* - u) = 

S~([ul;" - [ul N) + +S~([ul~ - [ulT)' 
Vu* E Vad = {v E]Rn I (2.16), (2.23) hold }. (2.27) 

Now, the inequalities introduced by the interface relations (2.19), (2.21) are 
used. These inequalities take the fonn: 
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Thus, the following variational inequality problem in terms of displacements 
arises from (2.25): 

Find kinematically admissible displacements u E Vad such that 

uTKT(u* - u) - pT(u* - u) + 
<P N(U*) - <P N(U) + <PT(U*) - <PT(U) ~ 0, 

Vu* E Vad. (2.29) 

For a stress based formulation (force method), the elasticity law is used in the 
form of (2.18) together with the interface relations (2.20), (2.22). By analogous 
reasoning one gets from (2.26) the complementary virtual work equality: 

VS* = [s*, -Siv, -STl E L;ad, 

where the set of statically admissible stresses is defined as: 

(2.30) 

L;ad = {s E lRn I such that (2.15), (2.24) hold}. (2.31) 

Finally, the following variational inequality is formulated: 

Find static admissible stresses s E L;ad such as to satisfy: 

T - - - -
(eo + sC) (s* - s) + <PN(S*) - <PN(S) + <PT(S*) - <PT(S) ~ 0, 

Vs* E L;ad. (2.32) 

Note that due to the linearity of the equilibrium and the compatibility equa­
tions (2.15), (2.16) and due to the linearity of the material constitutive laws 
(2.17), (2.18), the previous variational problems involve linear and bilinear 
forms of the unknown variables, apart from the nonlinear interface contribu­
tions. Accordingly, both the potential and complementary energy optimization 
problems involve linear and quadratic constituents and the contribution of the 
interface mechanisms. The two potential minimization problems read: 

Find u E Vad such that: 

II(u) = min {II(V) = ~vTKv - pT v + <PN(V) + <PT(V)} . (2.33) 
VEVad 2 

Find S E L;ad such that: 
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One may easily verify that problem (2.29) (resp. (2.32» actually expresses 
the minimality conditions for the energy optimization problem (2.33) (resp. 
(2.34». Moreover, by means of the convex analysis duality theory it is possible 
to show that if the relations (2.19) and (2.20) describe the same interface law, 
then 4>a is the convex conjugate of <Pa and, analogously, function TI is the convex 
conjugate of TIc and vice versa. 

The previously introduced general framework will be followed for the for­
mulation and the study of all small displacement structural analysis problems 
in this book. Due to the convexity of the quadratic strain energy contribution 
to the potential energy and the linearity of the external loading contribution, 
convex problems require that the interface law potential is a convex function. 
Accordingly, only monotone, possibly multivalued relations of the type (2.19), 
(2.20) are considered in this Section. From them, simple inequality relations, 
which describe the frictionless unilateral contact problem, are introduced in the 
remaining of this Section. They lead to inequality constrained convex potential 
optimization problems. The case of frictional laws, which introduce nondiffer­
entiable tenns in the potential energy, is considered in the next Section. The 
arising problems are variational inequalities (for the unilateral contact law) or 
quasivariational inequalities (when frictional effects with the simplification of 
given contact tractions are taken into account). 

Large displacement and large defonnation problems as well as the model­
ing of adhesive interfaces or friction laws with falling branches require the use 
of nonconvex optimization techniques and lead to hemivariational inequality 
problems, as it has been thoroughly discussed in previous publications [Pana­
giotopoulos, 1993], [Dem'yanov et aI., 1996], [Mistakidis and Stavroulakis, 
1998]. These problems are not studied here. 

2.1.2.1 THE UNILATERAL CONTACT CONDITIONS 

The pointwise frictionless unilateral contact law reads: 

-SN ~ 0, [U]N - d ~ 0, - SN([U]N - d) = 0, (2.35) 

where d denotes an initial opening (gap) of the unilateral contact joint. The 
inequality constraints on the interface tractions (no tensile tractions are per­
mitted), on the relative nonnal interface displacements (no interpenetration is 
allowed) and the complementarity relation between them are included in (2.35). 

By introducing the set: 

U~ = {[U]N I [U]N - d ~ O} (2.36) 

and by using the notion of the indicator function and of the nonnal cone from 
the convex analysis, the previous law (2.35) is written in the concise form: 

(2.37) 
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Equivalently, by using the notion of the support function auN of the convex set 
ad 

U!::t, one gets the conjugate potential: 

(2.38) 

Accordingly, the unilateral contact law is also written as: 

(2.39) 

The above pointwise laws lead to the (local) variational inequalities 

and 

respecti vely. 
For the whole discretized structure, the local constraints (2.36) are used to 

define the kinematically admissible set of displacements: 

{ U E 1R n I [u J N E U!::t for all unilateral joints} 

{u E ]Rn I Nu - d :S O} . (2.42) 

Accordingly, the structural analysis problem is written in the form of the vari­
ational inequality: 

Find u E Uad such that 

uTKT(u* - u) - pT(u* - u) 2:: 0, Vu* E Uad. (2.43) 

The potential energy minimization problem (cf. (2.33» is in this case a quadratic, 
linearly constrained optimization problem and reads: 

Find u E Uad such that 

II(u) = min {~vTKV -pT v} . 
vEUad 2 

(2.44) 

Furthermore, by following the general mathematical optimization theory (out­
lined later), the Kuhn-Tucker optimality conditions for (2.44) lead to the Linear 
Complementarity Problem (LCP): 
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Find U E JRn , SN E JR~ such that 

Ku - NT SN = p, Nu - d ~ 0, SN ~ 0, S~(Nu - d) = O. (2.45) 

The previous relation constitutes a Linear Complementarity Problem and can 
directly be used for the numerical treatment of the problem (see, among oth­
ers, [Klarbring, 1986], [Murty, 1988]). The case of structures with rigid body 
displacements and rotations, which leads to semidefinite stiffness matrices K 
and thus to problems which are only solvable if the Fichera solvability condi­
tions hold true, is treated in [Fichera, 1972], [Stavroulakis et al., 1991], [Alart, 
1993], [Panagiotopoulos, 1985, Chapter 4],[He et al., 1996], [Pang and Ralph, 
1996] (for the general nonconvex case, cf. [Naniewicz, 1993], [Goeleven et al., 
1997]). 

2.1.3 FRICTION PROBLEMS WITH CONVEX 
ENERGY POTENTIAL 

A simplified static Coulomb friction problem as proposed by [Duvaut and 
Lions, 1972], will be introduced first. Within this model, the stick-slip rela­
tions of the frictional mechanism are expressed in terms of the total (static) 
mechanical variables. Moreover, the (normal) contact mechanism is decoupled 
from the frictional one by assuming that the normal contact traction is given, 
i.e., S N = eN. The governing relations of the friction joint are: 

{
-To 

-ST = [-T~, ToJ, 
To, 

if [U]T:::; 0 
if [U]T = 0 . 
if [U]T ~ 0 

(2.46) 

By using the nondifferentiable (due to the absolute value 1.1), friction potential: 

¢T([U]T) = Tol[u]TI, 

the law can be written in the equivalent subdifferential form: 

-ST E 8¢T([ulT). 

The inverse to (2.46) relation reads: 

If -ST = -To 

If - To ~ - ST ~ To 
If -ST = To 

then [U]T ~ 0, 

then [ulT = 0, 

then [U]T ~ O. 

(2.47) 

(2.48) 

(2.49) 
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Defining the admissible tractions' set: 

Sad = {ST I -To S -ST S To}, (2.50) 

we get the inverse relation between [U]T and ST, i.e., the law: 

[U]T E 8Isad(-ST) or [U]T E 8¢T(-ST)' (2.51) 

The local variational inequality formulation of the above laws read 

-ST([U]T)([V]T - [U]T) S ¢T([V]T) - ¢T([U]T), V[U]T E R, (2.52) 

and 

-[U]T(ST)(S;' - 8T) SO, VS;, E Srd' (2.53) 

Moreover, we can write a variational inequality problem of the (2.29) type with 

<PT(U) = 2: ¢T([U]T) (2.54) 

or, in terms of stresses (force method) the variational inequality: 
Find s E ~ad such that: 

e6(s* - s) + sTCT(s* - s) SO, 

Vs* E ~ad = {O" E R n I (2.15), (2.24) and (2.50) hold} .(2.55) 

Variational inequality problems for unilateral (frictionless or frictional) bound­
ary conditions were among the first studied applications of inequality mechan­
ics. More details can be found in [Duvaut and Lions, 1972], [Panagiotopoulos, 
1985]. Moreover, for this specific case, an important remark can be made. 
Variational inequality formulations concerning smooth potentials and inequal­
ity constrained sets of admissible variations can be formulated (see, e.g., (2.43), 
(2.55)) by appropriately using convex duality theory. In a more general set­
ting, nondifferentiability can be avoided in some cases of convex problems by 
appropriate dualization. In the previous examples, due to the relatively simple 
relations, duality merely means the appropriate choice of displacement or stress 
based formulations of the structural analysis problem. 

The previously introduced static friction law involves two simplifications 
which allowed us to write down the variational inequality formulation of the 
problem, or, equivalently, the potential and complementary energy minimiza­
tion problems. Namely, the dynamic nature of the frictional effects and the 
implicit connection between normal and tangential mechanical behaviour are 
not considered in the laws (2.46)- (2.51). 
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2.1.3.1 COMBINED FRICTIONAL CONTACT PROBLEM 
Concerning the implicit relation between normal and tangential mechanical 

behaviour, one may formulate the following law (with a friction coefficient J-L): 

If -ST = -J-LISNI 

If -J-LISNI ~ -ST ~ J-LISNI 

If -ST = J-LISNI 

then [UlT ~ 0, 

then [UlT = 0, 

then [UlT ~ 0. (2.56) 

The coupling between normal and tangential mechanical behaviour is mani­
fested by the implicit dependence of (2.56) from the solution of the unilateral 
contact problem (through the contact stresses SN). A friction potential can be 
written as an implicit function of SN: 

(2.57) 

Analogously the admissible tractions' set reads: 

As it has been studied in various contributions, the above formulation gives 
rise to quasivariational inequality problems ([Mosco, 1976], [Baiocchi and 
Capelo, 1984], [Telega, 1988], [Zavarise et al., 1992], [Bisbos, 1995], [Outrata 
and Zowe, 1995]) of the following type: 

• For the displacement problem: 

Find kinematically admissible displacements u E Vad such that 

uTKT(u* - u) - pT(u* - u) + ~T(U*, SN) - ~T(U, SN) ~ 0, 

Vu* E Vad.(2.59) 

• In terms of stresses, we get the quasivariational inequality: 
Find s E L:ad (S N) such that: 

ea(s* - s) + sTCT(s* - s) ~ 0, 

Vs* E L:ad(SN) = {O" E lRn 1(2.15), (2.24) and (2.50) hold}(2.60) 

By using appropriate iterative solution algorithms of the fixed point type, the 
above quasi variational inequalities can be approximated by a series of varia­
tional inequalities. For example, in problem (2.59) one uses a first approxima­

tion of the normal contact stresses S~) and uses an approximate friction law 
with these fixed values for the contact stresses. In other words the contribution 
of the frictional joint in the potential ~T( u*, S~\ has the form which was 
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considered in previous paragraphs. The arising problem (2.59) is a variational 
inequality. From the solution a better approximation for the contact stresses is 
obtained and the procedure continues till convergence. Analogously one works 
with the problem (2.60). For the subproblems which arise within each step of 
the iterative procedure, the whole methodology introduced previously can be 
used. This strategy has first been proposed in [Panagiotopoulos, 1975] and is 
now accepted as a powerful solution method for the study of frictional contact 
problems [Kalker, 1988], [Kalker, 1990]. 

For the unilateral problem with static Coulomb type friction, one may for­
mulate an equivalent complementarity problem by using slack variables. This 
method has been developed in [K wack and Lee, 1988] for the finite element 
method and will be outlined later in this publication for the boundary element 
based formulation. 

2.1.4 BOUNDARY ELEMENT FORMULATION AND 
IMPLEMENTATION DETAILS 

2.1.4.1 BEM FORMULATION OF UNILATERAL PROBLEMS 

For the BEM formulation, one starts from the familiar matrix formulation of 
the boundary integral equation in elastostatics: 

Hu = Gt. (2.61) 

In (2.61), u is the vector of nodal displacements at the boundary, t is the bound­
ary traction vector, and the non symmetric matrices Hand G are appropriate 
influence matrices which are based on the used fundamental solution and the 
adopted boundary element discretization. 

For classical boundary conditions, known and unknown quantities of vectors 
u and t are separated, and all unknowns are gathered in the vector x and, finally, 
the system of equations: 

Ax=b (2.62) 

is formulated and solved. 
Let us assume that on a part of the boundary unilateral contact relations 

hold. Thus, both displacements and tractions of that boundary must remain, 
after appropriate rearrangement, for the solution of the nonlinear, unilateral 
problem. Hence, let Uen, Uet, ten, tet be the boundary nodal displacements 
and the boundary nodal tractions, respectively, along the normal (n) and the 
tangential (t) direction at the unilateral (contact) boundary. After appropriate 
partitionning and separation of known and unknown variables, relation (2.61) 
leads to: 
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+ [ G fcn G fct 1 [ tcn ] . 
Gccn Gcct tct 

(2.63) 

Here, the BEM equations are written separately for the two parts of each bound­
ary. These groups correspond to the two rows of the supermatrices H and G, 
i.e., the part of free (classical) boundaries (first subscript f ) and the part of 
the contact interface ( with first subscript c). Finally, the vectors of boundary 
displacements and boundary tractions are composed of the parts which corre­
spond to the bilaterally connected interface (with unknowns gathered in vector 
x, as usual, and given values used for the construction of vector f, cf. relation 
(2.62» and the contributions normally and tangentially to the unilateral part 
(with subscripts en and ct, respectivelly). 

For notational simplicity, the local coordinate transformation, which leads to 
the normal and tangential contact interface contributions, is not explicitly shown 
in (2.63). Note also that in the abbreviated notation used here, submatrices H f f 
and Hcf contain columns of the influence matrices H and G, according to 
the classical boundary conditions scheme (cf. relation (2.62». These classical 
techniques of BEM can be found in standard textbooks and will not be discussed 
here. 

The introduction of unilateral constraints and the reformulation into the stan­
dard LCP will be outlined in the sequel. Let us first assume a frictionless uni­
lateral contact problem with ttc = 0 and Uct unconstrained in (2.63). The 
unilateral contact relations which hold along a boundary laying in a initial dis 
tance (gap) d from a rigid support read: 

- T-
Yn = d - Ucn ~ 0, tn = -tcn ~ 0, Yn tn = 0 (2.64) 

Solving (2.63) with respect to vector Ucn , one gets the flexibility-type relation: 

o -
Yn=d+Yn+Fnntn. (2.65) 

Here, d is the initial distance vector, y~ is the deformation of the boundary 
due to the extemalloading or imposed displacement and F nn is the flexibility 
matrix constructed by the BEM equation (2.63). Finally, one gets a Linear 
Complementarity Problem (LCP) in standard form which is composed of (2.64), 
(2.65) and can be solved by any available mathematical programming algorithm. 
The Lemke complementary pivoting algorithm is used in most of our numerical 
investigations (see, e.g., [Murty, 1988], [Cottle et aI., 1992]). First attempts 
to use nonlinear equation reformulations and corresponding iterative, quasi­
Newton solution methods are described later. 
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2.1.4.2 LCP-BEM STATIC UNILATERAL-FRICTIONAL 
CONTACT PROBLEMS 

For the frictional unilateral contact problem, an analogous LCP reformulation 
is possible. The details may be found in [Mistakidis and Stavroulakis, 1998] 
and in the citations given therein. Briefly speaking, one may first write, as 
previously, a flexibility relation: 

[ Y n ] = [ dn ] + [ Ys ] + [ F nn F nt ] [ ~n ] . 
Yt d t Yt Ftn F tt tt 

(2.66) 

Here, the notation Yt = -Uct and tt = -tct has been used. The initial gaps 
in the normal and tangential (i.e., friction) direction are denoted by d n and dt. 
Moreover, the Coulomb friction relations may be as summed in the form (2.56), 
which for the used notation reads: 

Y t = 0 iff tt::; {L I tn I, 
Yt ~ 0 for tt = -{Ltn , 

Yt ::; 0 for It = +{LIn , (2.67) 

where {L is the friction coefficient. A standard LCP formulation is obtained 
from (2.66), (2.64) and (2.67) by using additional slack variables >'1, >'2,'/'1, "(2 
as follows: 

Yt 

"(1 

"(2 (2.68) 

The technique will be outlined for three-dimensional problems later in this 
Section. 

One should mention here that the outlined reformulations serve here to 
demonstrate that both frictionless and frictional contact problems can be writ­
ten as standard LCPs. Nevertheless, in a computer implementation one may 
consider separatelly the initial BEM relation (i.e., the linear equation (2.63)) 
and the nonlinear equations introduced by (2.64) and (2.68) and solve them by 
every available solution method (see also the attempt to use equivalent nonlinear 
equations for the solution of complementarity problems which are described 
later in this work and have been documented in [Stavroulakis and Antes, 2000], 
[Stavroulakis and Antes, 1999]). 

A comment on the initial gaps dn and d t which appear in relation (2.66) is 
appropriate here. One easily understands the physical meaning of the initial 
opening of a unilateral contact joint, i.e., the variable d n . For the initial slip 
variable d t one may imagine some initial dislocation. This may come from 
a time integration of a more realistic frictional mechanism written in terms 



www.manaraa.com

Computational mechanics 27 

of velocities. Finally, both variables have been introduced and used for the 
phenomenological description of wear and damage effects. 

2.1.4.3 MULTI-REGION BEM FORMULATION FOR 
INEQUALITY PROBLEMS 

The matricial reformulations for the treatment of a unilateral contact problem 
with friction, discretized by a two-region elastostatic BEM are summarized 
here. Let us consider the following discrete version of the BEM equations for 
each part of the structure, j = a, b: 

[ 
j j j j 1 [Xj 1 Hlf H fi H fcn H fct j 

HJ HJ HJ HJ ui_ 
if ii icn ict j-
J j j j u<;n 

Hc! Hci Hccn Hcct uJ 
ct 

(2.69) 

[ ~ ] + [~ti ~f:: ~f~t] [ :~J:n ]. 
fj Gj Gj G j tct c Ct ccn cct 

(2.70) 

Here, the superscript j refers to each of the two regions in the two-region BEM 
discretization. Moreover, the direct displacement equations are written for the 
three parts of each boundary. These groups correspond to the three rows of 
the supermatrices H and G, i.e., the part of free (classical) boundaries (first 
subscript j), the part of classical, bilaterally connected interface (with first sub­
script i) and the part of the contact interface (with first subscript c). Finally, 
the vectors of boundary displacements and boundary tractions are composed of 
the parts which correspond to the bilaterally connected interface (subscript i) 
and the contributions normally and tangentially to the unilateral part (with sub­
scripts en and ct, respectively). For notational simplicity the local coordinate 
transformations which lead to the normal and tangential to the contact interface 
contributions are not shown explicitly in the relations of this section. 

Note also that the variables of subvectors x j contain all unknown elements of 
the boundary displacement and traction vectors of the free parts of the boundary 
while the corresponding given loading or boundary condition contributions are 
included in the right hand side terms of vector f. In this respect, the submatrices 

H~! and Hj * include also contributions of the corresponding matrices G. This 
is the classical technique of introducing bilateral external boundary conditions 
in BEM and will not be discussed in more details here (see, among others, 
[Antes and Panagiotopoulos, 1992, Chapter 6] or [Kane, 1994, Chapter 9]). 

For the coupling of the two separate regions we must take into account the 
following two types of interface relations. For the fixed part of the interface, 
i.e., the two bodies are glued together with zero relative displacement, we have 

(2.71) 
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and 
(2.72) 

These are the classical, bilateral, linear interaction relations. 
For the unilateral and the frictional part of the interface it is advantageous to 

introduce a set of slack variables, so that we have 

a b + Uen = Uen Yn (2.73) 

t - t a - t b en- en-- en (2.74) 

and 
a b + Uet = Uet Yt (2.75) 

t - t a - t b et - et - - ct· (2.76) 

Note here that the unilateral contact condition will be considered by means of 
the inequality and complementarity relations between the gaps and the tractions 
in the normal direction, i.e., 

Yn ~ 0, ten ~ 0, t~nYn = O. (2.77) 

For the frictional mechanisms the relations (2.67), (2.68) with respect to the 
tangential variables Yt and tet must taken into account. 

The previous relations are merged and lead to the following (underdeter­
mined) system of equations 

Hi! 
Hi! 
H~! 
o 
o 
o 

Hjen 
Hien 
H~en 
o 
o 
o 

Hjet 
Hiet 
H~et 
o 
o 
o 

+ (2.78) 

-Gjen -Gjet 
-Gien -Giet 
-G~en -G~et 
-Gten 
-Gien 

-Gtet 
-Giet 

-G~en -G~et 

The latter system of equations together with the nonlinear relations (inequalities, 
complementarity relation) of the interaction interfaces admit a solution. In fact, 
due to the complementarity relations introduced by the unilateral contact and 
frictional mechanisms, certain complementary elements of the subvectors Y n 

and ten (respectively, Yt and tet ) are zero. 
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It should be noted that this technique has been applied for the modelling 
and the numerical solution of unilateral crack analysis problems within a multi­
region unilateral BEM framework. By this way, the use of hyper singular bound­
ary element formulations is avoided. The cost paid is, of course, a more com­
plicated computer implementation. On the other hand, a more numerically 
stable boundary element formulation is used which permitted to concentrate on 
the solution of the nonlinear interaction effects. The natural extension of this 
method would be to use one of the available hypersingular boundary element 
formulations for crack analysis problems (see, in this respect, [Alessandri and 
Mallardo, 1999]). When the BEM matrices are numerically evaluated, the ma­
tricial treatment is technically analogous to the LCP-BEM approach which has 
been followed here. 

2.1.4.4 UNIFIED LCP FORMULATION OF COMBINED 
UNILATERAL FRICTIONAL CONTACT PROBLEMS 

One should note here that a direct nonsymmetric LCP formulation of the 
frictional unilateral contact problem is possible, as it has been shown for the 
FEM in [Kwack and Lee, 1988], [Klarbring and Bjorkman, 1988] (for the case 
of three-dimensional problems, where the friction cone is linearized by means 
of a convex polyhedron see also [AI-Fahed et al., 1991]). This technique is 
outlined here for three dimensional problems with the notation used for the 
finite element based model (i.e., capital S Nand ST). The special case of two­
dimensional problems is obvious, following the decomposition of (2.68). Let 
the normal forces be assembled in vector SN = {SNl, ... ,SNnV (the same 
vectoras used in the previous Section for the frictionless case). The friction 
forces are assembled in vector ST where 

ST = {STU, ST12, ST21, ST22 , ... , STnl, STn2}T. 

Coulomb's law of dry friction connects the tangential (frictional) forces with 
the normal (contact) forces by the relation 

(2.79) 

Here I * I denotes the norm in lR 3, J-L is the friction coefficient (anisotropic friction 
may also be considered). The friction mechanism is considered to work in the 
following way: If ISTil < J-LISNil (i.e., ri > 0) the slipping value riT must be 
equal to zero and if ISTil = J-LISNil (i.e., ri = 0) then we have slipping in the 
opposite direction of STi. Explicitly, one has: 

If ri > 0, then YTi = 0 
if ri = 0, then there exists a > 0 such that YTi = -aSTi· 

(2.80) 

In order to achieve a LCP formulation of the above-described frictional contact 
mechanism, a piecewise linearization of the friction law (2.80) by a polyhedral 
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approximation of the friction cone from the interior is introduced. In this 
piecewise linear approximation, relation (2.80) reads: 

'Y = TJ;rSN + T~ST (2.81) 

where the matrices TT and TN of the linearised friction law have the form: 

TT = diag [T}, Tf, ... , Tr] , TN = diag [T}y, T~, ... , TN] (2.82) 

and the submatrices of (2.82) are constructed from the adopted linearization of 
the friction cone. By taking appropriate projections, the slip value in (2.79), 
(2.80) is written in the form: 

YT = TTA, A 2: 0 (2.83) 

where A is a vector of nonnegative slipping parameters. Then, 'Y and A fulfil 
the following orthogonality condition: 

ITA = O. (2.84) 

Note that the slipping value A and the tangential displacements UT are related 
by the compatibility relation: 

TTA - UT = dT (2.85) 

where dT denotes the initial tangential gap. 
A linear elastic behaviour of the structure is assumed now which, on the 

assumption that everything outside of the frictional contact interfaces has been 
condensed out (elimination of d.oJ's), reads: 

ii = FS (2.86) 

where 

ii = [ UN ] , F = [FNN FNT], § = [ SN ] . 
UT FTN FTT ST 

(2.87) 

Here, F is the symmetric flexibility matrix, F N N is an n x n nonsingular 
matrix with the mechanical meaning of the normal flexibility matrix, FTT 
is a 2n x 2n nonsingular matrix (the tangential flexibility) and FNT, FTN 
are the corresponding couple flexibility matrices. The flexibility formulation 
(2.86) may be produced by a finite element model with the well-known static 
substructuring (condensation) technique, or by a boundary element model using 
analogous condensation (cf. (2.66). 

Using the previous relations, the unilateral kinematic relations normally and 
tangentially to the interface take the form: 

YN - FNNSN - FNTST dN, 

TTA - FTNSN - FTTST = dT. (2.88) 
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A standard LCP formulation is derived by means of the following change of 
variables. First, from the second relation in (2.88), ST is expressed as follows: 

ST = -FT~FTNSN + FT~TTA - FT~dT. (2.89) 

Then, by eliminating ST from equations (2.88), we obtain 

YN - (FNN - FNTFT~FTN) SN - FNTFT~TTA 

= dN - FNTFT~dT'Y + (TfFT~FTN - T~) SN + 
-TfFT~TTA -TfFT~dT. (2.90) 

Finally a standard LCP is obtained from equations (2.90): 

w-Mz b 

w > 0, w 2: 0, w T z = 0 (2.91) 

with 

w 

and 

M - [ (FNN - FNTFT~FTN) FNTFT~TT 1 
1 1 (2.92) 

- -(TtFTTFTN - T~) TtFTTTT . 

LCP (2.91) is defined on R n +m 2 (n is the number of discrete unilateral joints, 
m2 = n x l, and 1 is the number of faces in the polyhedral approximation of 
the friction cone). 

The LCP formulation to the above unilateral contact and friction problems 
has been used, in connection with FEM discretization techniques, in previous 
publications (see, among others, [AI-Fahed et a1., 1991], [Stavroulakis et a1., 
1991]). The flexibility matrices in (2.91) can be formulated by either the sub­
structure technique of the Finite Element Method (e.g., [Stavroulakis et a1., 
1991]) or directly by the Boundary Element Method, as it is outlined here, (e.g, 
[Antes and Panagiotopoulos, 1992]). 

It should be mentioned here that the existence of a solution for a unilateral 
contact problem with Coulomb friction has been proved only under the assump­
tion that the friction coefficient is 'small' enough (see, among others, [Netas 
et a1., 1980], [J arusek, 1983], [J arusek, 1984], [Cocu, 1984], [Martins and 
Oden, 1987], [Klarbring et a1., 1991a], [Klarbring et a1., 1991b], [Doudoumis 
et a1., 1995], [Telega, 1995] ). See also the review article [Zhong and Mackerle, 
1992]. 
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2.2 SOLUTION ALGORITHMS 

As it has already been discussed in previous Chapters of this book, a large 
number of the nonlinear structural analysis problems can be written in a form of a 
potential or complementary energy optimization problem. Moreover, unilateral 
effects, friction, plasticity and damage effects introduce inequality restrictions 
in the optimization problem or require the consideration of more complicated 
potentials and dissipation functions. 

Nonsmooth mechanics applications involve, in the classical sense, nondiffer­
entiable functions and problems which have inequalities in their definition. Al­
gorithms for classical smooth computational mechanics problems are based on 
differentiable mathematical optimization techniques. After discretization of the 
mechanical problem, an energy optimization problem is solved or, equivalently, 
the optimality conditions of this problem are solved, i.e., a system of nonlinear 
equations. The appearance of inequality constraints and of nonsmoothness of 
the involved functions requires appropriate modifications of these techniques. 
Nonsmooth analysis and optimization tools can be used for this purpose. 

A few relevant thoughts are discussed in this Section. Algorithms for in­
equality constrained quadratic programming problems and for complementar­
ity problems are discussed in more details, since these problems arise in the 
applications studied in this book. 

One should mention here that several iterative decomposition techniques 
have been proposed for the solution of distributed optimization problems and 
of engineering applications (see, e.g., [Bertsekas and Tsitsiklis, 1989]). In 
mechanics, let us mention here the operator splitting techniques, the domain 
decomposition methods, the augmented Lagrangian techniques and the method 
of large time increments ([Glowinski and LeTallec, 1989], [LeTallec, 1990], 
[Ladeveze, 1995]). These techniques are especially interesting since they allow 
the development of parallel or distributed computer algorithms. These topics 
are not treated here. 

2.2.1 SMOOTH AND NONSMOOTH OPTIMIZATION 
APPROACH 

A model potential energy optimization problem is considered here which 
concerns an elastic structure with nonlinear interfaces. Moreover, let us as­
sume that the governing relations of the elastostatic analysis problem can be 
derived by appropriate differentiation of a potential energy function. A finite 
element discretization of the direct stiffness method with nodal displacements 
as the primary variables of the problem is assumed here. Let u be the n­
dimensional vector of displacement degrees of freedom and e the m-vector of 
element deformations. The discrete potential energy optimization problem in 
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elastostatics reads: 

min {II(u) = II(e(u)) + q>(u) + p(u)}, 
UEUad 

(2.93) 

where II ( e) is the elastic internal deformation energy, q> (u) is the potential 
that counts for boundary or interface effects and p( u) is the potential that gen­
erates the external loading vector. The geometric compatibility transforma­
tion is written in the form of a generally nonlinear but differentiable operator 
A( u) : 1Rn -+ 1Rm, e = A( u). Assume that the set of kinematically admis­
sible displacements is Uad = 1Rn. 

Variational formulations for the elastostatic analysis problem described by 
(2.93) are produced by expressing the optimality conditions for the potential 
minimization problem and using appropriate smooth or non smooth calculus 
rules for the expression of the involved (generalized) gradients of the composite 
function II(u) (see also [Panagiotopoulos, 1985], [Dem'yanov et aI., 1996]). 

We recall that classical nonlinear elastostatic analysis problems are written 
in the strong form: Find u E 1Rn such that 

V'II(u) = o. (2.94) 

The weak (variational equality) form of the problem reads: Find u E 1Rn such 
that 

rr' (u,~u) = V'II(u)TV'u = [a~~u)]T a~~e) ~u + 

+ [a~~u)]T ~u + [a~~)]T ~u = 0, V~U E lRn. (2.95) 

Finite element methods are based on an appropriate discretization of (2.95) 
and on the solution of the arising system of nonlinear equations. Moreover, 
the above interpretation of the virtual work as the directional derivative of the 
potential energy function makes the link between computational mechanics and 
numerical optimization straightforward. 

In the case of a linear (or linearized) problem, function II(u) in (2.93) is 
quadratic and (2.94) is a system of linear equations. For a nondifferentiable 
but convex function II(u) one has to solve, instead of the equation (2.94), the 
convex inclusion: find u E 1Rn such that: 

o E aII(u), (2.96) 

where a denotes the set-valued subdifferential of convex analysis. 
Details for the general case can be found in previous publications ([Pana­

giotopoulos, 1985], [Mistakidis and Stavroulakis, 1998]). In the sequel, the 
special case of quadratic programming and linear complementarity problems, 
which arise in the two-dimensional unilateral contact and frictional problems 
studied in this book, are discussed in more details. 
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2.2.2 QPP AND LCP SOLUTION SCHEMES 
Linear and nonlinear complementarity problems can be solved by means 

of methods developed for mathematical programming applications. Their de­
scription can be found in several publications of this area. 

The most robust algorithm for solving LCPs in mechanics is the Lemke's 
complementary pivoting technique (see [Stavroulakis et al., 1991] for a de­
scription and a mechanical explanation of the algorithm). A number of opera­
tor splitting and iterative techniques for the solution of variational inequalities 
(including LCPs) have been proposed and tested in [Goeleven et al., 1996]. 
Finally, the solution of static variational inequalities can be approximated by 
the solution of appropriate dynamical systems (see, e.g., [Nagurney and Zhang, 
1996]). The latter approach gives a link to neural network solution methods with 
possible hardware implementation, which is useful for real-time applications 
(see, e.g., [Kortesis and Panagiotopoulos, 1993], [Theocaris and Panagiotopou­
los, 1993], [Avdelas et al., 1995], [Stavroulakis et al., 1997], [Adeli and Park, 
1998], [Baniotopoulos, 1998]). 

In the following, a relatively new and promishing approach, which is based 
on nonlinear equation reformulation of the inequality and complementarity 
constrained problem is outlined. This method has been tested for both direct 
and inverse problems in the present work. 

2.2.3 NONLINEAR EQUATION APPROACH FOR 
COMPLEMENTARITY PROBLEMS 

The purpose of this paper is to exploit the applicability of recently proposed 
differentiable optimization reformulations of variational inequality problems in 
mechanics. In fact, researchers of the mathematical programming community 
have also realized the need to reformulate large scale problems with inequal­
ities and complementarity conditions as classical differentiable optimization 
problems. In this Section, which is based on [Stavroulakis and Antes, 2000], 
the nonlinear equation reformulation of the complementarity relations, mainly 
due to [Fischer, 1991], [Fukushima, 1992], [Facchinei et al., 1996], [Kanzow, 
1994], [Kanzow, 1996], is adopted. The variational inequality problem is thus 
reformulated as a nonlinear equation which, in turn, can be solved by every 
nonlinear equation solver (smooth, i.e., without any specific concern for the 
inequalities ). 

A nonlinear complementarity problem has the following general form: find 
x E lRn such as to satisfy the following set of relations: 

x ~ 0, F(x) ~ 0, xTF(x) = 0, (2.97) 

where F(x) : lRn -+ lRn is a continuously differentiable function. In the case 
of a linear function F(x), one gets the linear complementarity problem in the 
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standard form. In this section, contrary to the usual convention, plain type 
symbols will be used for both vectors and matrices. 

Note that, in general, a nonlinear complementarity problem (2.97) is equiv­
alent to a variational inequality expression of the following form: find x E JR~ 
such as to satisfy 

(F(x), x* - x) ~ 0, \:f x* E JR~. (2.98) 

More general relations where the set JR~ is replaced by a convex closed subset 
C of JR n can also be considered, but they will not be discussed here. 

Recall that if the function F (x) is the gradient of a continuously differen­
tiable convex function <p(x), i.e., F(x) = 8<p(x), then the above problems 
(2.97), (2.98), can be identified to be the solvability relations of an inequality 
constrained optimization problem with respect to the function <P (x). 

In mechanics, a frictionless unilateral contact problem for a linear elastic 
structure in the framework of small displacements and deformations which is 
discretized by the finite element method, is formulated as the minimum of the 
potential energy function. Additional inequality constraints which arise from 
the unilateral contact (kinematic nonpenetration) relations must be taken into 
account as well. Thus, the problem reads: find displacements u E Uad such 
that: 

u = argmin {<p(v) = ~vTKv - pT v}, 
v E Uad 

(2.99) 

wherethesetofadmissibledisplacementsreadsUad = {u E JRn: Nu - d:S: O}, 
K is the stiffness matrix of the discretized structure, u is the discrete nodal dis­
placement vector of the finite element assemblage, p is the loading vector and 
<P (u) is the potential energy of the structure. Moreover, n is the number of dis­
placement degrees of freedom in the previous finite element model. By writing 
the solvability relations of the linearly constrained quadratic programming min­
imization problem (2.99), the following nonstandard linear complementarity 
problem arises: 

Ku + NT A. p, (2.100) 

N u - d < 0, A. ~ 0, A. T (N u - d) = O. 

Here, the vector of discrete contact forces A. appears (i.e., the quantity A. = -SN 
in the notation of Section 2.1.3). 

Further elaboration of the problem (2.100) (static condensation of the dis­
placement variables u outside of the contact nodes) and the introduction of a 
set of nonnegative slack variables y lead to the following standard linear com­
plementarity problem: 

y d - Nu = NK-1NTA. + d - NK-1p, (2.101) 

Y ~ 0, A. ~ 0, yT A. = 0. 
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Here, the additional assumption that K is invertible, i.e., that no rigid body 
displacements or rotations arise, has been done for simplicity (cf. [Stavroulakis 
et al., 1991], [Goeleven et al., 1997] for more general cases). 

2.2.3.1 NONLINEAR EQUATION REFORMULATION 
The complexity of the complementarity conditions which appear in (2.97) 

can be studied, first, with respect to the one-dimensional set of relations (with 
a, bE lR,1): 

a ~ 0, b ~ 0, ab = 0. (2.102) 

Let us assume that a function ¢( a, b) : lR, 2 -+ lR, 1 is available, for which the 
following equivalence is true: 
¢( a, b) = ° -¢::::::> a, b satisfy the relations (2.102). 
A function with this property is called a NCP-function. A NCP-function can 
be used to express the nondifferentiable relations (2.102), which include in­
equalities and complementarity conditions, by means of equivalent, usually 
differentiable nonlinear equations. 

2.2.3.2 EXAMPLES OF NCP FUNCTIONS 
Recently proposed and studied NCP-functions include the following ones: 

• The natural residual, minimum-type function [Pang, 1990], [Pang, 1991] 

¢NR(a, b) = min{a,b}. 

• The Fischer-Burmeister function [Fischer, 1991] 

¢FB(a, b) = Ja2 + b2 - (a + b). 

or in a regularized form (it is a NCP-function for c = 0) 

¢FB(a, b, c) = J a2 + b2 + c2 - (a + b). 

(2.103) 

(2.104) 

(2.105) 

• The Kanzow-Kleinmichel function [Kanzow and Kleinmichel, 1997], (for 
,\ E (0, IJ and proposed value ,\ = 0.95) 

¢KK(a, b,'\) = v(a - b)2 + '\ab - (a + b). (2.106) 

• The whole class of NCP-functions proposed and studied in [Kanzow et al., 
1997] 

¢(a, b) = ~g(ab) + ~f( -a, -b), (2.107) 
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where 
'l/Jg(t) = max {O, tY ,p > 1, 

with the properties 'l/Jg(t) = ° ¢=} t ~ ° and'l/Jg(t) : R -+ [0,00), and 
'l/Jf ( - a, - b) may take, for instance, one of the following forms: 

'l/J~(a, b) 

'l/J~I(a, b) 

'l/J~B(a, b) 

'l/J~(a, b) 

(max {O, a} + max {O, b})P , 

(max {0,a}2 + max {0,b}2y/2 , 

max { 0, J a2 + b2 + a + b r ' 
= max {O, a, b}P . 

The properties of the previously listed NCP-functions have been studied in 
the given publications. For instance, the function (2.107) with p > 1 and i = I I 
or F B is differentiable with continuous gradients up to the order p - 1 (i.e., it 
is a Cp-1-function), see [Kanzow et al., 1997]. 

2.2.3.3 MERIT FUNCTIONS 
From the previous considerations it is obvious that the general nonlinear 

complementarity problem (2.97) can be written in a nonlinear equation form 
by summing up the NCP-function contributions of all of its components, i.e, by 
considering the merit function (for x E Rn and i = 1, ... , n, p > 1): 

n 

w(x) = L ¢?(Xi' Fi(X)) (2.108) 
i=l 

Analogous results concerning the differentiability properties of function 
(2.108), if used with the NCP-functions of (2.107) with p > 1 and i = II 
or F B, can be taken from [Kanzow et al., 1997]. 

2.2.3.4 SOLUTION TECHNIQUE 

The aim of this Section is to use the above formulated NCP and merit func­
tion (2.108), for the smooth reformulation of a (generally nonsymmetric) linear 
complementarity problem which comes from frictionless and frictional unilat­
eral contact problems. Thus, the numerical treatment of inequality problems 
can be accomplished by means of nonlinear equation solvers. 

One should note that, although more complicated nonsmooth Newton-type 
algorithms have been proposed for an effective solution of the previously listed 
nonlinear equations (see e.g., [Pang, 1990], [Kanzow, 1994], [Facchinei et a1., 
1996], [Kummer, 1988]), here only standard, commercially available solvers 
have been tested. Although the cost of the resulting algorithm is not optimal, this 
way facilitates the connection with widely used nonlinear solvers in mechanics. 
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Besides its importance for the solution of nonsmooth equations or of comple­
mentarity problems, the smoothing technique outlined in this Section facilitates 
the numerical solution of optimization problems for systems governed by varia­
tional inequalities or by complementarity problems. The main idea is to replace 
the nonsmooth and nonconvex subsidiary restriction introduced by the comple­
mentarity problem by a smooth nonlinear equation, which is a more classical 
form of subsidiary conditions in optimization. More details on this point will 
be given later in Chapter three. 

2.2.3.5 FORMULATION OF NONLINEAR EQUATIONS WITH 
FEMANDBEM 

The previously summarized nonlinear equation reformulations of comple­
mentarity problems and the various contact mechanics problems will be com­
bined to form the system of linear and nonlinear equations which must be 
solved. 

For the mixed LCP which describes the frictionless unilateral contact prob­
lem discretized with the FEM (see relations (2.100), (2.45)) using the definition 
of the gap vector Y N = d - [u 1 N and of the normal contact force S N = - S N 
(analogously to the BEM reformulation (2.64)) and one of the NCP functions 
introduced previously, one gets the system of equations: 

(2.109) 

Here u E lRn , and one considers a discretization with q unilateral joints, i.e., 
Sn E lR q, Y N E lR q. Moreover, the i-th element of vector Y n (resp. vector t n ) 

is denoted by Yn(i) (resp. by tn(i))' for i = 1, ... , q. Thus, one has n linear 
equations and q nonlinear equations in system (2.109) for the n + q variables 
u anu tn (recall the relation YN = d - Nu). In a concise form one writes: 

0, 

0, (2.110) 

where ¢ is an m-dimensional vector composed of the individual contributions 
of the unilateral joints, as it is explained in (2.109). 

By using static condensation, one has the system of q linear and q nonlinear 
equations: 

YN - FNNSN - d = 0, 

¢(YN, SN) = 0, 

(2.111) 
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or, in a more compact way after elimination of variable Y N, the system of q 
nonlinear equations: 

(2.112) 

Analogously, one proceeds with frictionless contact problems formulated 
with the BEM. After appropriate, obvious partitioning, one has the system: 

with the definition of Yn and tn given in (2.64). Here, one has a system of 
2n equations from BEM, nc nonlinear equations for the unilateral contact part 
and nc trivial equations for the known frictional tractions (set to zero, for the 
frictionless case). This system is solved for the 2{n - nc) unknowns of vector 
x and of the unknowns of the vectors Un, tn, Ut, each one being of dimension 
nco 

For frictional contact problems, only BEM-based formulations will be out­
lined here; the analogous FEM problems can easily be formulated in an anal­
ogous way. A simple and straightforward way is the use of the transformed 
and condensed LCP problem (2.91) and, in tum, its reformulation as a system 
of linear and nonlinear equations (analogously to (2.111) or (2.112)). In a two 
dimensional case, the dimension of each one of the resulting vectors w or z 
(see relation (2.91)) is equal to 3nc, where nc is the number of unilateral fric­
tional boundary nodes (nc are used for the unilateral contact problem and 2nc 
variables for the frictional contribution, as it has been outlined previously). 

Another approach consists in the use of appropriate nonlinear equations 
which enforce the set of inequalities and complementarity relation of the fric­
tional stick-slip mechanism (see relations (2.79) to (2.84)). They are analogous 
to the previously introduced NCP functions, for the nonlinear equation refor­
mulation of the unilateral contact relations. Thus, one gets for the frictional 
contact case: linear equations (2.113) together with the nonlinear equations 

¢n(Un, t n) 0, 

¢t(ut, tt, Un, t n) = O. (2.115) 

Here, ¢n is a nonlinear relation of the unilateral contact mechanism and ¢t is a 
nonlinear relation of the frictional law (see relation (2.119) for an example of 
an appropriate NCP function of this kind). 
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2.2.3.6 NCP FUNCTIONS PROPOSED IN ENGINEERING 
LITERATURE 

Recent papers on unilateral contact analysis include nonlinear equations for 
the numerical treatment of the problem. Here, only the relations which have 
already been tested in [Stavroulakis and Antes, 2000] are given. More details 
can be found in the original literature. The corresponding complementarity 
relations of the two dimensional frictional contact problem, in the notation 
used for the BEM formulation of this paper, read: 

(2.116) 

and 

(2.117) 

In [Leung et aI., 1998] the following natural residual functions have been 
proposed (cf. (2.103)): 

(2.118) 

cPT(Yn, tn, Yt, tt) Yt + min {O,!J max {a, tn - Yn} + tt - Yt} + 
+ max{O,!Jmax{O,tn-Yn}+tt-yt} (2.119) 

Nevertheless, our attempt to use the above given nonsmooth equation with 
classical nonlinear (smooth) equation solvers was not very successful. The 
nondifferentiability of the above functions led to premature stop of the proce­
dure, which could not find even an approximation of the result. On the other 
hand, the regularization of the minimum and maximum terms, again proposed 
in [Leung et aI., 1998], was sufficient to solve this problem. Thus, the following 
regularized form has been used: 

(2.120) 

The regularization of (2.119) is based on (2.120) and the following relation for 
the maximum terms: 

,¢€(a, b) 

with '¢(a, b) 

{ max {a,b} 
a + i(a - b - €)2 

max(a, b) 

if la - bl ~ € 

if la - bl < € 
(2.121) 
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In [Bathe, 1996], p. 628 the following NCP function for the unilateral contact 
case is proposed: 

(2.122) 

where E > 0 and small. 
Finally, [Park and Kwack, 1994] propose the following nonlinear equation: 

).. ( -) 1 - 13 3 -3 0 'fiN Yn,tn = Yn-tn -Yn-tn= . (2.123) 

Analogous formulations have been proposed and tested in the recent work 
[Christensen et aI., 1998]. Numerical comparisons of the performance of the 
smooth equation reformulation for unilateral contact problems with and without 
friction are given in [Stavroulakis and Antes, 2000]. 

2.3 
2.3.1 

ELASTODYNAMICS 
STEADY STATE, HARMONIC PROBLEMS 

A short outline of the formulation of the reduced elastodynamic equations for 
homogeneous, elastic and isotropic bodies subjected to time-harmonic excita­
tion and the corresponding boundary element solution method are given in this 
section. More details can be found in the specialized literature (see, among oth­
ers, [Antes, 1988], [Manolis and Beskos, 1988], [Antes and Panagiotopoulos, 
1992], [Dominguez, 1993]). 

Let us consider the equations of motion, written in a Cartesian coordinate 
system, for each point x of an elastic body which occupies the area n : 

(Jij,j(X, t) - p(X)Ui(X, t) + Pi(X, t) = 0, x E n. (2.124) 

Here, (Jij is the stress tensor, p is the mass density of the body, Ui is the dis­
placement vector and Pi is the loading vector. Moreover, i, j run over the values 
1 ... 3 for three dimensional problems (resp. the values 1 ... 2 for two dimensional 
problems) and the usual Einstein's summation assumption for repeated indices 
is adopted. On the assumptions of linear elastic material behaviour and of small 
amplitude vibrations, i.e., in a small displacements and deformations theory, 
equation (2.124) takes the form: 

(cr(x) - c~(x)) Uj,ji(X, t) + C~(X)Ui,jj(X, t) 

., ( ) Pi (x, t) ° n 25) -Ui x,t + p(x) = ,X E H. (2.1 

In (2.125), Cl is the dilatational (or pressure) and C2 is the distortional (or shear) 
wave propagation velocity. For plane stress two dimensional isotropic elasticity 
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applications, Cl , C2 are related with the elasticity modulus E and the Poisson's 
ratio v as follows: 

E E 
c~ = c; = -.,...----,--

p(l + v)(l - v)' 2p(1 + v)' 
(2.126) 

A linear elastic, homogeneous and isotropic material law is assumed here­
after. 

Let us assume further that all elastodynamic quantities of the studied problem 
are time harmonic. Thus, for a given frequency w, the excitation takes the form 
Pi (x, t) = Pi (x) eiwt with i = A. Accordingly, the response of the system is 
harmonic as well. Thus, we use the Ansatz Ui (x, t) = Ui (x) eiwt for the sought 
solution. Under this transformation, the time dependent equations of motion 
(2.124 )-(2.126) take the following, frequency dependent form: 

(cI(x) - c~(x)) Uj,ji(X) + C~(X)Ui,jj(X) + w2Ui(X) + :(~} = 0, (2.127) 

x E n. 
By using the reciprocal theorem of Green and adequate fundamental solutions 

and by assuming that only boundary excitations are applied on the structure, one 
may obtain the boundary integral equation of the system at each point ~ En: 

d(~)u(O = Ir [P(x)u*(x,~; /'i,l, /'i,2) - u(x)fJ*(x,~; /'i,l, /'i,2)] dr. (2.128) 

Here, /'i,l = ~, /'i,2 = ~, are the wave numbers, e and x are the points on the 
boundary r or in the body n, u* (x, e; /'i,l, /'i,2) (resp. p* (x, e; /'i,l, /'i,2) ) denotes 
the fundamental solution (resp. its normal derivative u*n on the boundary) and 
the jump factor d(O is calculated as usual in the BEM (for instance, d(e) = 0.5 
for a smooth part of the boundary). Moreover, in the derivation of (2.128) all 
loading has assumed to be applied on the boundary of the structure. 

After appropriate point collocation and boundary element discretization, one 
gets the discretized form of (2.128): 

(2.129) 

where u (resp. t) denotes the boundary nodal displacement (resp. bound­
ary traction) vector and the influence matrices H, G depend implicitly on the 
assumed excitation frequency w. 

Further processing of (2.129), i.e., taking into account the boundary condi­
tions of the structure, separating known and unknown elements of vectors u 
and t according to the boundary conditions of the structure, forming the system 
of equations etc., follows the classical techniques in the BEM and will not be 
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discussed in details here. For further reference, we write here the form of the 
system of equations which arises: 

A(w)x(w) = b(w), (2.130) 

with solution denoted by x(w, b) for a given frequency wand a given 'loading' 
vector b. 

One should mention here that, by using the correspondence principle of linear 
viscoelasticity (attributed to Hashin [Hashin, 1962]), certain types of material 
(viscous or hysteretic) damping can be included in the previous formulation. In 
this case, the elasticity constants E and 1/ become complex numbers and, ac­
cordingly, one has to work with complex numbers in equations (2.127)-(2.129). 
For instance, a viscous material damping would require an elasticity modulus 
of the form: 

E* = E+iwC. 

A hysteretic, frequency independent damping can be represented by an elasticity 
modulus of the form 

E* = E(l + i(), 

where ( is the loss (or damping) factor and E( is sometimes referred to as the 
loss elasticity modulus. From the real (res. the imaginary) parts ofthe boundary 
quantities u and t of (2.129) one may extract information about the oscillatory 
and the decaying behaviour of the solution (see [Dominguez, 1993], Chap. 2 
for more details). 

Although the BEM program used in this investigation has this ability, no 
attempt has been made till now to use this information for identification tasks. 
Thus, only the real parts of the corresponding quantities have been used, i.e., 
only the oscillatory behaviour of the system is studied. Nevertheless, as it will 
be discussed in the applications, a small damping is added in order to avoid 
excessive numerical problems with resonance frequencies. 

2.3.2 TRANSIENT ELASTODYNAMICS 
The direct dynamic boundary element formulation is outlined in this Section. 

It leads, after space and time discretization, to flexibility-like relations in time 
and space which connect all boundary quantities arising in a finite or in an 
infinite elastic domain. This is the more effective framework to study unilateral 
effects where all nonlinearities are confined on the boundaries. Under certain 
assumptions (e.g., absense of body forces) no domain discretization is used. 
One may compare in this respect the substructure techniques in the finite element 
method, where nevertheless, the full advantage of a boundary only discretization 
can only be exploited in static problems. 

Let us consider the elastodynamic state equations: 
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O"ij,j(X, t) + p(x)bi(x, t) - p(x) Ui (x, t) = 0, i = 1,2(3), x E O. (2.131) 

In (2.131) Ui(X, t) denotes the displacement at point x in the direction of the 
coordinate axis i within the reference Cartesian coordinate system OXIX2 for 
twodimensional problems (resp. OXIX2X3 for a three dimensional case). The 
elastic body is as summed to occupy the region 0 with boundary r. Moreover, 
dots denote time differentiation, bi (x, t) is the loading vector and p( x) is the 
mass density. In addition, initial displacements UOi(X, t = 0) and velocities 

UOi (x, t = 0) are needed for the time integration of (2.131). 
The BEM is based on Graffi's elastodynamic reciprocal theorem which is an 

extension of the Bettis' theorem in elastostatics. It connects the quantities of 
two elastodynamic states. Let the second, auxiliary state be denoted by a * as 
superscript. The reciprocal relation reads: 

Ir Ti(X, t) * ui(x, t)dr + (2.132) 

In p(x) (bi(x, t) * ui(x, t) + UOi(X, 0) u; (x, t)+ UOi (x, O)ui(x, t)) dO 

= Ir Tt(x, t) * Ui(X, t)dr + 

In p(x) (bi(x, t) * Ui(X, t) + uOi(x, 0) Ui (x, t)+ U~i (x, O)Ui(X, t)) dO, 

where the Riemann convolution between quantities 9 (x, t) and h( x, t) is defined 
on 0 x [0,00) as: 

(X t) * h(x t) = { J~ g(x, t - r)h(x, r)dr, for (x, t) EO x [0,00) 
g, '0 for (x,t) EO x (-00,0). 

(2.133) 
Moreover in (2.132), Ti (x, t) denotes the boundary tractions which correspond 
to the stress tensor O"ij(X, t) at the point x on the boundary r. 

By inserting a given, known elastodynamic solution for a given loading as 
second elastodynamis state in (2.132) (the fundamental solusion, i.e., u*, T* 
etc.), one gets an integral equation representation of the displacements or of the 
tractions. Using the impulsive force at the point e and at t = r in the direction 
of the Xj coordinate axis: 

(2.134) 

with zero initial conditions together with the known solution of the correspond­
ing elastodynamic problem in an infinite medium (Stokes' solution) one gets the 
following, so-called Love's integral representation of the displacement field: 

Cij(e)Ui(e, t) = Ir (+uij(x, t; e, r) * Ti(x, t) 

-Tij(x, t; e, r) * Ui(X, t)) dr(x). (2.135) 
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For simplicity initial displacements and velocities are not considered in (2.135). 
Moreover Dirac function and Kronecker index should not be confused in relation 
(2.134). Moreover, the value of Cij (~) depends on the position of~, i.e., Cij(~) = 
8ij for ~ E n, Cij(~) = 0 for ~ E n and for ~ E r, it depends on the geometry 
of the boundary (for a smooth boundary one has Cij (~) = O.Mij ). 

Time and space discretization of (2.135) follows the classical schemes of 
computational mechanics. Here, for simplicity, the time interval is discretized 
by equal time steps flt and the boundary is discretized by an appropriate number 

of nodes and boundary elements. By considering the nodal quantities u~m)j, 
Ti(m)j, i.e., displacement of node j in the direction of axis i in time tm = m· flt, 
etc., one writes the discretization: 

(2.136) 
i m 

Ti(~' T) = L L 'l/Jj(~)jJm(T)Ti(m)j. 
i m 

Here, appropriate spacial (¢, 'l/J) and time (rt, jJ) interpolation functions are used. 
One should mention that time and space discretization must be compatible 
in order to avoid numerical instabilities. Quadratic boundary elements and 
piecewise linear time interpolation is used here (it is adopted from the computer 
implementation of [Dominguez, 1993], see p. 407). 

It is known that several of the previously given integrations involve rapidly 
varying quantities which theoretically may become equal to infinity (singu­
larities). Therefore, special care should be taken in the evaluation of these 
integrals, as it is discussed in the relevant publications. In this respect, differ­
ent approaches for the construction of relation (2.137) may be followed. For 
instance, an indirect BEM approach which uses artificial nodal singularity in­
tensities but provides separately relations for the boundary displacements and 
for the boundary tractions is outlined in [Antes et al., 1991]. 

2.3.2.1 LCP-BEM DYNAMIC UNILATERAL-FRICTIONAL 
CONTACT PROBLEMS 

For the dynamic structural analysis problems, two approaches have been 
followed. The real elastodynamic boundary element approach, which is based 
on Graffi' s elastodynamic reciprocal theorem together with time and space 
discretization has already been outlined in the previous paragraph. By writting 
separately the contributions of the current time step and the ones of the previous 
time steps, one gets for the k-th time step (see [Stavroulakis et al., 1999] for 
details): 

k-l 
H(1)u(k) = G(1)t(k) + L [G(k-m+l)t(m) - H(k-m+l)u(m)]. (2.137) 

m=l 
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Here, u(m) is the vector of nodal boundary displacements at time tm = m . 
D..t, t(m) is the vector of nodal boundary tractions and H, G are appropriate 
influence matrices which are obtained from the numerical discretization of 
the elastodynamic reciprocity relation. Since H, G depend on the difference 
J-L = k - m + 1 between the observation time k . D..t and the impulse time m· D..t, 
this difference is used as superscript in matrices H and G of (2.137). 

For each time step, the relation (2.137) is coupled with appropriate boundary 
conditions and it is solved, with algorithms analogous to the ones used in the 
static case. 

One should note that, even with the simplification of a constant time step, 
the size of the data which must be available for the calculation of the last two 
terms of the right hand side in (2.137) grows with the size of the time interval 
between the beginning of the calculation and the assumed time step. The size 
of the problem to be solved is not affected. This is the cost paid for having an 
accurate BEM solution of the time domain dynamical problem. In some cases 
one may use the simplified, dual reciprocity BEM approach, as it is outlined in 
the next paragraph. 

In the dual reciprocity BEM approach, the underlying idea is to treat the 
dynamic problem as a static one and to consider the effect of the inertial forces 
as additional body forces. This is obtained by weighting the dynamic equlib­
rium equations by a time-independent function, which may be the fundamental 
solution used for the static problem. Without going into the details of this for­
mulation (see [Stavroulakis and Antes, 1999]), we note that the arising matricial 
form looks like the familiar system of equations arising in the finite element 
method: 

Mii+Hu = Gt. (2.138) 

An explicit solution strategy consists in performing a time discretization for 
the integration ofthe dynamical equation (2.138). Using an explicit integration 
scheme and, for simplicity, a constant time step D..t, one writes the dynamic 
equation (2.138) for the time step (k): 

Mii(k)+Hu(k) = Gt(k). (2.139) 

Furthermore, approximation of the acceleration vector ii by using values of the 
discrete values of displacements u at the same (k) or previous time steps (k-l), 
(k-2) .. , leads to the relation: 

(2.140) 

Here, H is the equivalent of the dynamic stiffness matrix of the finite element 
method and contains the elements of H and the contribution of M and D..t. 
The technical details can be found in [Partridge et aI., 1992], [Dominguez, 
1993]. Finally, the similarity of relation (2.140) with the static relation (2.61) 
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is obvious. Therefore, the subsequent steps for the integration of inequality 
and complementarity constraints follow the description given previously for 
the static problem. 

One should be aware that the dual reciprocity approach may lead to inaccu­
rate results, especially for fast transient dynamics. It seems that the method is 
suitable for certain types of loading histories, but, at least as far as the author 
knows, there does not exist a thorough numerical investigation of its perfor­
mance for nonlinear dynamical problems. 
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COMPUTATIONAL AND STRUCTURAL 
OPTIMIZATION 

3.1 OPTIMIZATION AND OPTIMALITY 
CONDITIONS 

Optimization deals with the determination of the extremum or the extrema of 
a given function over the space where the function is defined or over a subset of 
it. Several optimization problems arise in nature and they are known, mainly for 
historical reasons, as principles. The principles of minimum potential energy 
in statics, the maximum dissipation principle in dissipative media and the least 
action principle in dynamics are some examples (see, among others, [Hamel, 
1949], [Lippmann, 1972], [Cohn and Maier, 1979], [de Freitas, 1984], [de Fre­
itas and Smith, 1985], [Panagiotopoulos, 1985], [Hartmann, 1985], [Sewell, 
1987], [Baiant and Cedolin, 1991]). Furthermore, mathematical optimization 
is tightly connected with optimal structural design, control and identification. 
Applications include contemporary questions in biomechanics, like the under­
standing of the inner structure in bones [Wainwright and et.aI., 1982] or of the 
shape in trees [Mattheck, 1997]. 

Elements of mathematical optimization are used for the modeling and the 
effective solution of problems in computational mechanics. This is the case of 
unilateral contact and of frictional problems, which are studied here, but also of 
more general nonsmooth mechanics applications which have been considered in 
[Panagiotopoulos, 1985], [Panagiotopoulos, 1993], [Dem'yanov et aI., 1996], 
[Mistakidis and Stavroulakis, 1998], [Haslinger et aI., 1999]. 

A short summary of results related to mathematical and structural optimiza­
tion are collected in this Chapter. More details can be found, among others, in 
the references. 

Identification problems can be written as output error minimization prob­
lems. The whole mechanical system (i.e., the structural response) is included 

55 
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either as an implicit function or as a set of subsidiary constraints in this opti­
mization problem. If the mechanical problem itself is considered as an energy 
minimization problem, one gets bilevel optimization formulations. For contact 
mechanics' applications, a nonclassical bilevel optimization problem arises. 
Theoretical results and algorithms for this kind of problems are presented in 
the second part of this Chapter. 

For a real-valued function f defined on an open set n c R n , a local mini­
mum (resp. global minimum) point x* E n is defined by the following relation 

f(x) ~ f(x*), Vx E O(x*) (resp. Vx En), (3.1) 

where O(x*) denotes the neighbourhood of x*. 
By using the notion of the first derivative of f at x*, f' (x*), if the function 

f has an extremum at point x* E n and, in addition, it is differentiable at this 
point, then the following Euler's equation holds true there: 

f'(x*) = O. (3.2) 

For the relative extremum of a function f with respect to a subset U of 
n c R n , the notion of Lagrange multipliers is used. Let the set U be defined 
by means of m functions ¢i : n -+ R, which are continuous with continuous 
first derivatives (i.e., ¢i E C1, i = 1, ... , m), as: 

U={xEn:¢i(X)=O, i=1, ... ,m}Cn, (3.3) 

and let the derivatives ¢~ (x*), i = 1, ... , m be linearly independent. If f has a 
relative extremum at x* with respect to the set U, then there exist m Lagrange 
multipliers Ai (x*), i = 1, ... , m such that: 

m 

j'(x*) + L Ai(X*)¢~(x*) = O. (3.4) 
i=l 

By assuming that f is twice differentiable at point x* E n, then the necessary 
condition for a relative minimum of f at x* reads 

!,,(x*)(x, x) ~ 0, Vx E Rn. (3.5) 

In order to facilitate the understanding of the above conditions and to fix 
notations concerning the first and second derivatives f', !" and their particular 
representation for the Euclidean scalar product, the gradient and the Hessian, 
\! f and \!2 f, the Taylor expansion formulae for a twice differentiable function 
f : R n -+ R at point x* are recalled here: 

1 
f(x* + x) = f(x*) + f'(x*)x + 2!"(x*), (x, x) + Ilxll~E(x), (3.6) 
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1 
f(x* + x) = f(x*) + (\7 f(x*), x) + 2"((\72 f(x*)x, x) + (x, x)E(h), (3.7) 

1 
f(x* + x) = f(x*) + (\7 f(x*))Tx + 2" XT \72 f(x*)x + hThE(X). (3.8) 

Here (".) denotes the R n Euclidean scalar product, x*, x E Rn, Ilxll~ is the 
L2 norm and E (x) is a small scalar. 

As an example, for a quadratic functional defined by means of a symmetric 
n x n matrix K and a vector p ERn, as: 

1 
f(x) = 2" (Kx, x) - (p, x), (3.9) 

one has 
[f'(x)f = \7 f(x) = Kx - p, Vx ERn. (3.10) 

If one identifies K with the stiffness matrix of a structural system, p with the 
loading vector and x with the (displacement) degrees of freedom at, say, a finite 
element model, then the solution of the system of linear equilibrium equations 
(3.10) is an extremum, through (3.2), of the potential energy function of the 
system (3.9). If, moreover, an extremum of (3.9) with respect to a set defined 
by a given m x m matrix A and a vector bERm is sought, i.e., over the set: 

Xad = {x E R n : Ax = b} , 

then the necessary condition (3.4) leads to the following system 

P 
b. 

(3.11) 

(3.12) 

In the previous structural analysis interpretation, the constraint set (3.11) de­
fines, for instance, displacement boundary conditions (supports) of the struc­
ture. Accordingly, the Lagrange multipliers vector A E R m are identified with 
the discrete support reactions. 

An effective way to distinguish between local and global minima(cf. (3.1)) is 
provided by the notion of convexity. A subset of a vector space is called convex if 
for all two points Xl, x2 belonging to it, the closed segment x = AXI + (1- A)X2, 
o ::; A :S 1 belongs to the subset. A necessary condition for a differentiable 
function f to attain a relative minimum at x* with respect to a convex subset U 
is given by the Euler's inequalities: 

f'(x*)(x - x*) ~ 0, Vx E U. (3.13) 

If, moreover, the function f is convex over U, i.e., if 
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then the inequality (3.13) is also a sufficient minimality condition. For a differ­
entiable (resp. twice differentiable) function f, convexity is equivalent to the 
following relations: 

f(x) ;::: f(x*) + f'(x*)(x - x*), Vx, x* E U, (3.15) 

respectively 
f"(x*)(x - x*,x - x*) ;::: 0, Vx,x* E U. (3.16) 

lfthe inequalities in (3.15), (3.16) are strict, then the function is strictly convex 
and uniqueness of the affiliated optimization problem is assured. 

Recall that the quadratic function (3.9) is convex (resp. strictly convex) if 
the matrix K is non-negative definite (resp. positive definite). 

Theoretical and technical details pertaining to the previous discussion can be 
found in [Elsteretal., 1977], [Ciarlet, 1989], [Aubin, 1993], [Bertsekas, 1982], 
[Fletcher, 1990], [Murty, 1988], among others. 

3.1.1 SMOOTH, INEQUALITY CONSTRAINED, 
CONVEX PROBLEMS 

Before dealing with the general form of optimality conditions for nondiffer­
entiable, convex problems restricted by convex equality or inequality relations, 
constrained optimization problems for smooth functions shall be discussed. 

Let us consider an inequality constrained optimization problem, defined over 
the set (cf. (3.3)) 

U = {x En: <pi(X) ~ 0, i = 1, ... ,m}. (3.17) 

The set U is assumed to be convex, which holds true if all functions <Pi, i E 

{1, ... ,m}, are convex. Let the active index set at point x* E n be denoted as 

I(x*) = {i E {I, ... , m} : <pi(X*) = O}. (3.18) 

Suppose that the functions <Pi, i E I(x*), are differentiable at x*, the function 
f : n -+ 1R whose minimum is sought, is also differentiable at x* and that the 
remaining, inactive constraints i /CI(x*) are continuous at x*. 

The Lagrange multiplier conditions (3.4), given previously for the case of 
equality constrained problems (3.3), are generalized by the following Karush­
Kuhn-Tucker conditions, which cover inequality constraints (3.17) as follows: 
If f has a relative minimum at x* with respect to the set U defined by (3.17) 
and if the constraint qualifications given previously hold true, then there exist 
Lagrange multipliers Ai(X*), i E I(x*), such that (cf. (3.4)) 

J'(x*) + L Ai(X*)<P~(x*) 0, 
iEI(x· ) 

Ai(X*) > 0, Vi E I(x*). (3.19) 
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Karush-Kuhn-Tucker condition (3.19) is a necessary optimality condition if 
U defined by (3.17) is a convex set and becomes a sufficient condition for a 
minimum if in addition function f is convex (see e.g. [Ciarlet, 1989], p. 345). 

In view of (3.17), condition (3.19) can be written as a set of equalities, 
inequalities and a complementarity condition as follows: 

f'(x*) + L Ai(X*)CP~(x*) 0, 
iEI(x*) 

Ai(X*) > 0, CPi(X*) ~ 0, i E {I, ... ,m}, 

L Ai(X*)CPi(X*) 0. (3.20) 
iEI(x*) 

Relations (3.20) constitute a nonlinear complementarity problem (NLCP). 
If function f is quadratic and the set U is defined by linear or affine functions 
CPi, i = 1, ... ,m, then relations (3.20) constitute a nonstandard linear comple­
mentarity problem (LCP, see [Glowinski and LeTallec, 1989], [Murty, 1988], 
[Cottle et at, 1992], among others). Thus, for the minimum of the quadratic 
function (3.9) over the set (cf. (3.11) 

Xad = {x E lRn : Ax - b ~ O}, (3.21 ) 

the following nonstandard linear complementarity problem linear complemen­
tarity problem must be solved (cf. (3.12»: 

Kx + ATA p, (3.22) 

Ax - b ~ 0, A 2:: 0, AT(Ax - b) = 0. 

Here, the constraint qualification mentioned earlier simply requires that the set 
(3.21) is nonempty. 

Note that, after the introduction of a set of nonnegative slack variables y, the 
following standard linear complementarity problem can be formulated from 
(3.22) (on the assumption that K is invertible, i.e., that f is strictly convex): 

y = b - Ax = AK-1 ATA + b - AK-1p, (3.23) 

Y 2:: 0, A 2:: 0, yT A = 0. 

Note also that this special case of linear complementarity problems in normal 
form (3.22) has certain advantages for the theoretical and numerical study. 
For example, problem (3.23) can be solved by using variants of the pivoting 
techniques developed in the area of linear programming (see e.g., the Lemke 
algorithm [Murty, 1988]). 

3.1.1.1 LAG RAN GlANS, SADDLE POINTS, DUALITY 

At the end of this Section a short introduction to Lagrangians, saddle points 
and the theory of duality is presented. Restricting ourselves to the fundamental 
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points of this much wider area, we are going to consider Lagrangians and 
saddle points as a consistent way of introducing constraints, of equality or 
inequality type, into a given optimization problem. From another point of 
view, Lagrangians permit a unified writing of engineering analysis problems 
(including mixed formulations). Duality, in tum, provides the link between the 
various variational (minimum, or in general stationary) principles in mechanics 
which, usually, have been developed separately in the past (see e.g., [Hamel, 
1949], [Washizu, 1968], [Lippmann, 1972], [Matthies et al., 1979], [Oden and 
Reddy, 1982], [Hartmann, 1985], [Sewell, 1987]). Recently, nonconvex duality 
results have been used for the study of nonlinear problems in mechanics. Details 
on these topics, which are not treated here, can be found in [Stavroulakis, 1993], 
[Galka and Telega, 1995], [Mistakidis and Stavroulakis, 1998], [Gao, 1998]. 

Let us consider again the minimization of a convex, differentiable function 
f (x) over the convex subset of R n defined by the differentiable inequality 
constraints of (3.17). The Lagrangian function associated with this problem, 
.c(x, J.L) : R n x R~ -+ R, reads: 

m 

.c (x, J.L) = f (x) + L J.Li <Pi (x). (3.24) 
i=l 

A point (x*,,x) E R n x R~ is called a saddle point of the Lagrangian 
.c(x, J.L) if point x* is a minimum of the function .c(., J.L) : R n -+ R and point 
,x is a maximum of the function .c( x, .) : R~ -+ R, i.e., if 

sup £(x*, J.L) = £(x*,,x) = inf .c(x, ,x). (3.25) 
itER+- xERn 

Note that vector ,x at the saddle point contains the Lagrangian multipliers 
of the Karush-Kuhn-Tucker conditions (3.19). Furthermore, from the second 
equality in (3.25) we see that the original (primal) constrained optimization 
problem can be replaced by an unconstrained one, provided that the value of 
the Lagrange multipliers ,x E R~ is known. These multipliers can be found 
independently if one considers the first equality in (3.25) in the form of the dual 
problem: 

find'x E R~ : G('x) = sup G(J.L) , 
itER+-

with the function G : R~ -+ R defined by: 

G(J.L) = inf .c(x, ,x). 
xERn 

(3.26) 

(3.27) 
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3.1.1.2 CONCISE FORM OF OPTIMALITY CONDITIONS 
Let us consider again the inequality constrained set (3.17), defined by means 

of m continuous and continuously differentiable functions ¢i E Cl(Rn), i E 
{l, ... ,m}: 

U={XE!lCRn l¢i(X)~O, i=l, ... ,m}. (3.28) 

A concise expression of the above outlined optimality conditions can be ob­
tained if one uses conical approximations of the boundary of the constrained 
set (3.28) (see, e.g., [Dem'yanov et al., 1996]). Under appropriate regularity 
conditions, the cone of admissible directions at a point x* E !l u U coincides 
with the Bouligand cone and the tangent cone and can be expressed by: 

ru(x*) = {g ERn I 'V¢i(X*)T 9 ~ 0, j E Jo(x*)}, (3.29) 

where, in tum, the active index set Jo(x*) is defined by: 

Jo(x*) = {j E {I, ... , m} I ¢i(X*) = O}. (3.30) 

By using the notion of the conjugate cone rt(x*) to the cone ru(x*): 

r+ = {x E R n I (x,y) ~ 0, Vy E r}, (3.31) 

we define the normal cone Nx ' (U) to the convex set U at the point x* E U by 
the relation 

Nx'(U) = -ri.(u). (3.32) 

Using the previous notation, the optimality conditions for the minimization 
of a smooth, convex function f (x) over a convex set U defined by means of 
smooth and convex inequality constraints as in (3.28), read ([Hiriart-Urruty and 
Lemarechal, 1993]): 

Find x E U such that: 

J'(x, x* - x) 2: 0, Vx* E U, (3.33) 

or equivalently 
J'(x, y) 2: 0, Vy E ru(x), (3.34) 

or equivalently 

J'(x) n rt(x) =I 0 == 0 E J'(x) + Nu(x), (3.35) 

where J'(x, y) = J'(x)y = ('V f(x), y) is the directional derivative of f at 
point x in the direction of y. 
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3.1.2 CONVEX, NONSMOOTH OPTIMIZATION 
3.1.2.1 UNCONSTRAINED 

Let us consider now first the case of unconstrained minimization of a convex, 
nonsmooth function. For a convex, nondifferentiable function f, the notion of 
the first derivative must be generalized such as to take into account the fact 
that there exist points where the function may have crisps. Convex analysis 
provides us with a set-valued enhancement of the derivative which is based 
upon the inequality (3.15). A subgradient w(x*) E Rn is defined as a vector 
which satisfies the relation: 

f(x) ~ f(x*) + (w(x*), X - x*), Vx E U. (3.36) 

The set of all such vectors forms the convex analysis subdifferential of f at x* , 
i.e., 

8f(x*) = {w(x*) ERn : (w(x*), x - x*) ~ f(x) - f(x*), Vx E U}. 
(3.37) 

For further reference, we give here also the expression of the directional deriva­
tive of a nondifferentiable, subdifferentiable convex function, at point x in the 
direction y, denoted by f'(x, y): 

f'(x, y) = max (w, y), Vy E Rn. 
wE8f(x) 

Accordingly the first order optimality condition (3.2) reads: 

o E 8f(x*). 

Observe that due to (3.37), the previous relation can also be written as 

(3.38) 

(3.39) 

(w(x*), X - x*) ~ 0, Vw(x*) E 8f(x*), Vx E U, (3.40) 

which reveals the certain connection with the Euler's inequalities (3.13). 

3.1.2.2 CONSTRAINED 

We may now generalize the optimality conditions (3.33)-(3.35) for the case 
of a convex, nondifferentiable function f. They read: 

Find x E U such that: 

8f(x) n rt(x) =1= 0 {=::} 0 E 8f(x) + Nu(x). (3.41) 

Besides the pioneering works of [Moreau, 1963], [Rockafellar, 1970], the in­
terested reader may found more material on convex analysis and optimization 
in the following references: 
[Aubin and Frankowska, 1991], [Aubin, 1993], [Clarke, 1983], [Cottle et aI., 
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1992], [Dem'yanov and Vasiliev, 1985], [Dem'yanov and Rubinov, 1995], 
[Hiriart-UrrutyandLemarechal, 1993], [Murty, 1988], [Shor, 1985], [Rockafel­
lar, 1982]. Applications in mechanics and engineering can be found, among oth­
ers, in [Ekeland and Temam, 1976], [Panagiotopoulos, 1985], [Ciarlet, 1989], 
[Friedman, 1982], [Rodrigues, 1987], [Hlavacek et aI., 1988]. 

3.1.3 CONVEX OPTIMIZATION ALGORITHMS 
3.1.3.1 SMOOTH UNCONSTRAINED PROBLEMS 

First and second order methods for smooth unconstrained problems are re­
viewed. The notion of strict convexity together with the one of ellipticity assure 
the existence of one unique minimum of the following optimization problem 
defined, in general, over a non-empty, convex closed subset Uad of a Hilbert 
space U: 

find x E U s.t.f(x) = inf f(x*). 
X*EUadCU 

(3.42) 

Recall that a real valued functional defined on a Hilbert space U is elliptic if it 
is continuously differentiable in U and if there exists a real constant c > 0 such 
that 

(\If(x*) - \If(x),x* - x) 2 cllx* - x11 2 , Vx*,x E U. (3.43) 

Moreover, an elliptic functional f : U -t R is strictly convex and coercive if it 
satisfies the inequality: 

f(x*) - f(x) 2 (\If(x),x* - x) + ~llx* - x11 2 , Vx*,x E U. (3.44) 

Recall that the notion of elliptic functionals on a Hilbert space U is an ex­
tension of the notion of quadratic functionals with positive definite matrix over 
Rn. In this case, U is replaced by Rn. (cf. (3.9) with K positive definite; then 
c in (3.43) is the smallest eigenvalue of K, see e.g. [Ciarlet, 1989], p. 291). In 
engineering applications, the appropriate Hilbert space depends on the problem 
and the applied discretization. 

A generic iterative solution algorithm which converges for a coercive, convex, 
differentiable functional f (u), reads: 

Algorithm: Iterative First Order Minimization. 

For iteration k = 0,1, ... , 

1. Define a starting vector x(O) , 

2. Define a descent direction vector d(k) (x(k)), 
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3. Solve the one-dimensional minimization problem: 
Find p(x(k), d(k)) E lR such that 

f(x(k) + p(x(k), d(k))d(k)) = inf f(x(k) + pd(k)) 
pER 

in order to find the step size p(x(k), d(k)), 

4. Update current point 

x(k+1) = x(k) + p(x(k), d(k))d(k), 

and, if convergence is not obtained, continue with step 2. 

(3.45) 

(3.46) 

A relaxation-type technique for U = lR,n simply uses all coordinate axis 
directions e(l), ... ,e(n) as "descent" directions in step (b) of the previous algo­
rithm. For the quadratic functional (3.9), it reduces to the Gauss-Seidel iterative 
solution technique for the solution of the linear system of equations K x = P 
which corresponds to the optimality condition of the problem (3.10). 

A gradient solution technique applies the direction d(k) (x(k)) = -\7 f (x(k)) 

instead. 
If one uses higher order gradient information, it is possible to enhance the 

effectiveness of the previously outlined first order schemes. For instance, for 
a twice continuously differentiable function f, one may replace steps (2-4) of 
the previous algorithm by defining the update formula: 

x(k+1) = x(k) _ {H(x(k))} -1 \7 f(u(k)), (3.47) 

where H(x(k)) is the Hessian \72 f(x(k)) of the function f, for the Newton 
iterative algorithm, or a positive definite approximation of it, for the various 
quasi-Newton schemes. 

If second order gradient information is not available, or if their calcula­
tion is expensive, or even if vector-valued arithmetic operations are performed 
effectively in a given computing environment, then a number of directions 
... ,d(k-3), d(k-2), d(k-1), calculated in the previous cycles of the algorithm 
can be used for the estimation of H- 1 in (3.47) and, thus, for the determination 
of d(k), p(x(k), d(k)) in (3.45), (3.46); this is the general class of conjugate 
gradient algorithms (see, e.g., [Gill et al., 1981], [Fletcher, 1990]). 

3.1.3.2 CONSTRAINED PROBLEMS 

Unfortunately, the simple scheme of the unconstrained algorithm, combined 
with some element-wise projection does not converge for general constrained 
optimization problems, with the exception of box-type inequality constraints 
of the form: 

Uad = {x E lR,n: CYi ~ Xi ~ f3i, i = 1, ... ,n}, (3.48) 
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where ai, {3i E RI and one may have ai = -00 and/or (3i = +00. In this case 
the relaxation method of (3.45), (3.46) is accompanied by a projection over the 
set (3.48), i.e., for instance (3.46) reads: 

x(k+1) = PUad (x(k) + p(x(k),d(k))d(k)). (3.49) 

For instance, the quadratic minimization problem with f(x) defined in (3.9) 
and Xad = {x E R n : x ~ O} = R+., may be solved by the simple projection 
gradient scheme 

(HI) _ {(k) _ ( (k) _ ). } ._ 
xi - max xi Pk Kx P z, 0 ,~- 1, ... ,n. (3.50) 

In mechanics, early attempts to solve unilateral contact problems have been 
based on (3.50) (see, e.g., [Panagiotopoulos, 1985], [Glowinski and LeTallec, 
1989]). 

The importance of the simple projection schemes like (3.49), (3.50), lies 
in the fact that more complicated constrained optimization problems may be 
transformed, through duality and the introduction of Lagrange multipliers, so 
that they have inequality constraints of the simple form (3.48). 

One should observe that in the dual problem (3.26) the involved constraints 
are simple, box-type ones; thus simple projected iterative solution techniques 
can be used for the solution of this problem. Thus, a primal-dual solution 
strategy, where the primal problem is transformed for given values of the La­
grangian multipliers into an unconstrained optimization problem, whereas the 
Lagrangian multipliers are estimated by the dual optimization problem (3.26) 
with simple inequality constraints, seems to be meaningful. In fact, Uzawa's 
method is based on this idea: 

Algorithm: Uzawa's Algorithm. 

1. For initial values x(O), ). (0) and 
for iterations k = 1,2, ... , 

2. keep ).(k-I) constant and calculate x(k) as solution of the unconstrained 
minimization problem: 

3. keep x(k) constant and calculate)' (k) from the optimization problem (cf. 
(3.26»: 

(k) _ {(k) .( (k)) } ._ \ - max \ + PcPz x ,0, 2 - 1, ... , m, (3.52) 
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4. if convergence is not achieved, continue iterations from step 2. 

Here, for the writing of the simple update rule (3.52), we have used the 
fact that from the minimality conditions of (3.27) (cf. (3.19), (3.24)), G(p,) 
in (3.26) is a liner function of p, with gradient composed of the components 
(\lG(p,))i = ¢i(x(k)), i = 1, ... , m. Thus, (3.52) is the simple projection 
gradient scheme (3.50) for the solution of the minimization problem for the 
function -G(p,) (cf. (3.26)). 

For the quadratic optimization problem (QPP) (3.9), (3.21), Uzawa's algo­
rithm reads: 

Algorithm: Uzawa's Algorithm for QPP. 

1. For initial values x(O) , >. (0) and 

for iterations k = 1,2 ... , 

2. For >.(k-l) given solve: 

3. For x(k) given update>. by means of the scheme: 

4. If convergence is not achieved, continue iterations from step 2. 

(3.53) 

(3.54) 

One may observe that Uzawa's scheme is actually a gradient algorithm for 
the dual optimization problem. 

All the previous results can easily be modified to take into account the pres­
ence of equality constraints. The reader is referred, among others, to [Bertsekas, 
1982], [Ciariet, 1989], for more details. For details on more complicated relax­
ation schemes the reader may consult, e.g., [Glowinski et aI., 198 I], [Hlavacek 
etal.,1988]. 

Recent developments on the application of adaptive multigrid methods for the 
selective, controlled refinement of the discretization and the numerical solution 
of large scale problems can be found in [Komhuber, 1997] and the references 
given therein. 
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3.1.3.3 NONSMOOTH PROBLEMS 
Nonsmooth convex problems may arise either by a nondifferentiable, convex 

function f (.) or, if one introduces equality and inequality constraints defined by 
the set Uad, by means of exact penalty techniques. The latter case corresponds 
to the writing of the problem (3.42) in the following form: 

find x E U S.t. f(x) = inf f(x*) + Iu d(X*), 
x.EU a 

(3.55) 

where the indicator function of the convex set Uad has been used being defined 
as: 

I (x) = { 0, if x E Uad 
Uad +00, otherwise. (3.56) 

Recall that optimality conditions for (3.55) are written in tum as: 
Find vector x E lRn such that: 

o E 8 (f(x) + IuaJx)) = 8f(x) + NUad(x). (3.57) 

A gradient is not uniquely defined for a nondifferentiable function at the 
points of nondifferentiability (kinks). Thus, gradient-type optimization schemes, 
as the ones outlined previously, are not directly applicable here. Moreover, the 
optimality condition is written in the form of an inclusion and not of an equation 
and this should be taken into account in the algorithm for both the evaluation 
of a descent direction and in the stopping criterion. Accordingly, second order 
information (Hessian) can not be defined in the classical way. 

On the other hand, it should be admitted that the points where the poten­
tial function is nondifferentiable are isolated. Therefore, it is reasonable that 
the first attempts to solve nondifferentiable problems were based on smooth 
optimization techniques. 

Use of a single, arbitrary element g(k) of the subdifferential in Step 2 of the 
unconstrained algorithm, i.e., d(k) = g(k) E 8f(X(k)), leads to the subgradient 
optimization methods [Shor, 1985]. A more refined strategy would be the use 
of all the first order information which is included in the sub gradient. A search 
direction which is a steepest descent direction for function f (x) is provided by 
the solution of the convex minimization (sub)-problem: 

(3.58) 

Here 11.11 denotes an appropriate norm in lRn , for instance the Euclidean norm. 
A complete characterization of the set 8f(x(k)) is needed for the solution of 
(3.58). This characterization exists indeed for known, structured convex and 
nonsmooth functions of mechanics (i.e. for composite functions, sums of given 
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max-type functions etc., cf e.g. [Fletcher, 1990], [Womersley and Fletcher, 
1986]). In turn, nondifferentiability must be considered for the solution of the 
one-dimensional line search subproblem in the Step 3 of the unconstrained 
algorithm as well. 

Nevertheless, the noncontinuity of the subdifferential operator causes con­
vergence problems in the above outlined scheme (see, e.g., [Dem'yanov and 
Vasiliev, 1985], [Hiriart-UrrutyandLemarechal, 1993][vol. I,p.363]). Roughly 
speaking, the subdifferential operator is unable to see what is happening in the 
vicinity of a given point. Moreover, it changes discontinuously, it is set-valued 
for isolated values of its domain and, numerically, one has practically no chance 
to detect these points exactly due to numerical inaccuracies in a computer imple­
mentation. Theoretically, nonlocal extensions of the subdifferential operator, 
like the 8E (E-subdifferential), may be used in connection with (3.58). N everthe­
less, in general it is difficult to calculate this set-valued operator explicitly even 
for simple problems (cf. [Dem'yanov and Vasiliev, 1985]). Thus, practically, 
two methods remain for the treatment of the problem: 

1. the bundle optimization concept, where an approximation of 8E is iteratively 
constructed along the steps of an iterative scheme and the 

2. hypodifferentiable optimization algorithm, where, for a given class of func­
tions, a Hausdorff continuous operator is constructed, which can be used for 
numerical purposes. 

The bundle optimization algorithm introduces a polyhedral approximation 
of 8f(x(k)) in (3.58), which, in turn, is defined by information accumulated 
along the iteration steps i = 0, ... , k of the algorithm. In this case, the min­
imal assumption is done that for each point x(k) the value of f(x(k)) and one 
subgradient g(k) E 8f(x(k)) is available. From this bundle of information: 

x(i), f(x(i)), g(i) E 8f(x(i)), i = 0,1, ... ,k 

an appropriate local approximation of the function is constructed, which, in 
various implementations, takes into account both informations from the vicinity 
of the current point x( i) as well as second order informations of the function. An 
exposition of this idea and appropriate algorithms are given in [Kiwiel, 1985], 
[Schramm and Zowe, 1992], [Hiriart-Urruty and Lemarechal, 1993]. 

3.2 OPTIMIZATION UNDER EQUILIBRIUM 
CONSTRAINTS (MPEC) 

The structural optimization problem as well as the inverse and identification 
problem may be formulated as generalized bilevel optimization problems or as 
optimization problems under eqUilibrium constraints. This way is followed in 
this section for the formulation of both above mentioned problems. Similarities 
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with and differences from the classical mathematical optimization problems 
become obvious from this presentation. 

3.2.1 FORMULATION 
Let us consider a mathematical model of a system which contains 

• z E Rm design (resp. inverse) parameter variables and 

• u E Rn primary state variables. 

The generalized bilevel optimization problem (also called optimization under 
equilibrium constraints) has the following general form. At the upper level, a 
certain cost or gain function j(z, u) is minimized with respect to the design 
parameters z: 

minj(z, u) 
z 

(3.59) 

such that (z, u) E Z. Here, set Z includes all equality and inequality constraints 
on the variables z and u. Moreover, the solution of a lower level optimization 
problem with respect to the state parameters u is, in general, a multi valued func­
tion S(z) and is added to the constraint set of (3.59) as an additional constraint, 
i.e.: 

u E S(z) (3.60) 

In fact, at the lower level one has the set of equations, inequlities and com­
plementarity relations that govern the mechanical problem, or, if one uses a po­
tential energy minimization formulation, a second optimization problem with 
respect to the state variables u. It should be noted that the lower level prob­
lem (thus, its solution as well) are parametrized with the parameter variables 
z. Moreover, due to this nonclassical nature of the lower level problem, its' 
solution as a function of the parameters z, i.e., u(z) may have multiplicities and 
nondifferentiable behaviour (with respect to z). Thus, one has, in general, the 
multivalued form of (3.60). 

Examples of formulations for the lower level problems include: 

A Variational Inequality problem V I (F (z, .), C (z)) : 
u E S(z) iff u E C(z) 

(v - u)T F(z, u) 2: 0, '\Iv E C(z) 

An Affine Variational Inequality problem AV I(q, M, C) : 
u E S(z) iff u E C 

(v - uf(q + Mu) 2: 0, '\Iv E C(z) 

(3.61 ) 

(3.62) 
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And the case of bilevel programms where the lower level problem is written 
as a minimization problem as well, i.e., 
F(z, u) = \l uII(z, u), where II is an appropriately defined potential 
u E S (z) , if u is solution of the problem 

minII(z, u), u E C(z) 
u 

(3.63) 

One should note here that the complexity of the discussed bilevel program­
ming problems also arises in the case of linear programms with equilibrium 
constraints (LPEC), i.e., in the following relatively simple problem: 

min { dT z + eT u + fT v} 

such that Ay + Bu + Cv ~ g, (u, v) ~ 0, uT V = 0 (3.64) 

As it is now relatively well understood, the main cause of difficulty in the 
previous bilevel problems is the presence of the nonconvex complementarity 
constraints (e.g., the last equality in (3.64)). Among the difficulties introduced 
by this restriction is that the validity of certain constraint qualifications is not 
satisfied, so that available existence and approximation results from the theory 
of mathematical optimization can not be used without modifications. Moreover, 
the solution map (3.60) is a multifunction which may also have discontinuities 
with respect to the variables z. In that case, if one replaces the value(s) of 
u E S(z) into f(z, u) (implicit function approach), the arising minimization 
problem of (3.59) is of a nonclassical nature. 

A few examples of relevant applications, elements of the theoretical inves­
tigation and outlines of some recently tested solution algorithms are presented 
in this Chapter. 

More details can be found, among others, in [Luo et aI., 1996], [Shimizu et aI., 
1996], [Migdalas et aI., 1997], [Outrata et aI., 1998], [Hilding et aI., 1999b]. 
Early applications on mechanics have been presented by the group of Prof. 
Maier, who studied optimal design for unilateral structures [Giannessi et aI., 
1978], [Giannessi et aI., 1982] and identification problems for elastoplastic 
structures [Maier et aI., 1982], [Maier, 1982]. 

Our limited numerical experience confirms the findings of other researchers 
that, till now, the effectiveness of relatively simple algorithms or heuristics 
must be tested on a case-by-case basis, while theoretically more elaborated 
algorithms can not attack but a few, small size academic examples. Given that 
this kind of problems arise in different applications (e.g., financial modelling 
or trafic equilibrium) and that several groups work in this area, it is hoped that 
more effective algorithms will be available in the near future. 
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EXAMPLES OF STRUCTURAL OPTIMIZATION 
OPTIMAL DESIGN FOR STRUCTURES 

The structural optimization problem for classical structures, i.e., the ones 
governed by equations, is formulated as follows: 

• upper level cost or gain minimization 

minJ(z, u(z)) 
z 

(3.65) 

• lower level structural analysis problem: find u E R n S.t. 

K(z)u = p or g(z, u) = p (3.66) 

Here, z is the vector of design variables and, for a displacement-based finite 
element discretization, K(z) is the stiffness matrix of the structure, u is the 
vector of nodal displacements and p is the corresponding loading vector. 

It is obvious that, even in the case of linear structural analysis problems the 
structural response (e.g., vector u) is, in general, a nonlinear function of the 
design variables z. Thus, the upper level problem is a nonconvex function of 
z as well, since, even for a convex function f(z, .), one cannot guarantee the 
convexity of the composite function f(z, u(.)). It is interesting to observe that 
in the area of numerical structural optimization much effort has been invested 
in order to find beneficial parametrizations which reduce these nonlinearity and 
nonconvexity effects (cf, e.g., [Brousse, 1991]). 

More details on techniques and algorithms used in structural optimization 
can be found in the specialized bibliography. 

3.2.2.2 OPTIMAL DESIGN FOR UNILATERAL STRUCTURES 

Unilateral behaviour is a special case of nonlinear mechanical problems. 
This model is appropriate for structures with unilateral contact and friction, 
as it is the case with the cracked structures studied in this work. The optimal 
design problem is written in the form: 

• upper level: minJ(z, u(z)) 

• lower level: Find u ERn, SN E Rq S.t. 

K(z)u - NT SN = p, (3.67) 

Nu - d :::; 0, SN :::; 0, SJ:,(Nu - d) = O. (3.68) 
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Details of theoretical and algorithmic results which can be used for the study of 
these problems can be found, among others, in [Haslinger and Neittaanmaki, 
1996], [Outrata et aI., 1998], [Hilding et aI., 1999b]. 

It should be noted that, by using the LCP formulation of the frictional con­
tact problem introduced in a previous Section, one may formulate the optimal 
design for frictional contact structures in the same, general bilevel optimization 
framework, i.e.: 

• upper level: minJ(z,u(z)) 

• lower level: w - M(z)u = b 

w ~ 0, u ~ 0, wT U = O. 

An application of optimal control with respect to the friction coefficient (i.e., 
z = /.t is the friction coefficient) is formulated and studied in [Outrata et aI., 
1998]. 

3.2.2.3 OPTIMAL PRESTRESS OF UNILATERAL STRUCTURES 

This application has been studied in previous publications of the author by 
means of nonsmooth optimization techniques (the bundle method) in connec­
tion with finite element approximations for the unilateral contact problem of 
mechanics. This is actually the implicit function approach to the optimal de­
sign problem, where the upper level is solved with respect to variables z and 
the relation u(z) is replaced by its value from the solution of the lower level 
(mechanical) problem. The problem studied has the following form: 

• upper level: 
min J (z, u(z)) (3.69) 

• lower level: Find u E lRn , SN E lRq S.t. 

Ku - NT SN = P + Gzz, (3.70) 

Nu - b ~ 0, SN ~ 0, S~(Nu - b) = O. (3.71) 

In the outlined application the prestressing forces where the design variables z, 
which contributed to the force eqUilibrium (3.70) by means of the transforma­
tion matrix G z . The goal of the optimization has been to close the unilateral 
cracks (i.e., reinforce the cracked structure). More details can be found in 
[Stavroulakis, 1995a], [Stavroulakis, 1995b] and in the later publications [Luo 
et aI., 1996], [Hilding et aI., 1999b], which mention this work as one of the 
typical examples in MPEC. 
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3.2.2.4 GEOMETRY DESIGN, INVERSE OR IDENTIFICATION 
PROBLEM 

This is the formulation of the least square error minimization problem arising 
in inverse identification problems for unilaterally connected structures: 

• upper level: 
,------2 

minj(z, u(z)) = L {Ui(Z) - un (3.72) 

• lower level: Find u E lRn, SN E 1Rq s.t. 

K(z)u - N(z)T SN = p(z), (3.73) 

N(z)u - b(z) ~ 0, SN ~ 0, S~(N(z)u - b(z)) = O. (3.74) 

Here, u? are the measured displacements at some points of the structure and 
Ui (z) are the corresponding responses (displacements) of the parametrized 
structural analysis problem, which is defined as the lower level subproblem 
above. 

In the framework of crack identification, the parameters z define the un­
known crack(s), which may eventually be found by fitting, in the least-square 
sense, the assumed model to the available measurements, as it is described 
by the upper level minimization problem above. In a more general setting, 
displacement measurements uD may be replaced by other measured quantities 
(e.g., stresses or strains). The required modifications to the previous problem 
are straightforward. 

One should mention here the additional difficulties which make the solu­
tion of inverse problems more complicated than the optimal design problems 
with the same mathematical structure. The first difficulty is the well-known 
ill-posedness of the inverse problem. In fact, the error measure in (3.72) may 
be insensitive for certain values of the parameter z, and change easier for other 
values of z. This should be combined with the known fact that the efficiency 
of numerical optimization techniques depends on the scaling of the problem. 
In addition, one is not totally free to choose the parametrization, because the 
parameters included in vector z are usually more or less dictated from the con­
sidered inverse problem. Thus, special care should be taken for the numerical 
solution of problem (3.72). The second difficulty is related to the nonconvexity 
of problem (3.72). It is well known that for nonconvex optimization problems, 
like problem (3.72), there exist local minima and that the majority of the avail­
able local optimization algorithms cannot guarantee that the global minimum 
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has been found. In the framework of structural optimization or in other branches 
of applied optimization one may be satisfied even with a local minimum (a sub­
optimal solution). For inverse problems, the solution (e.g., the crack prediction 
offered by the value of z ) which corresponds to a local minimum of the error 
function in (3.72) may be completely useless. 

A simplified LCP-BEM formulation of problem (3.72-3.74) reads: 

• the error minimization problem at the upper level 

min ~ (u(z) - uo)T A (u(z) - uo) (3.75) 

• with the LCP-BEM unilateral contact model at the lower level 

H(z)u(z) = G(z)t(z). (3.76) 

u(z) ~ 0, t(z) ~ 0, u(z)T t(z) = 0, (3.77) 

Here A is a positive-semidefinite weight matrix. Moreover, for notational 
simplicity, all elements of vectors u(z) and t(z) are assumed to be involved in 
the unilateral contact conditions (3.77). Technical details of more complicated 
cases have been given previously. 

3.2.2.5 NONSMOOTHNESS AND NON CONVEXITY IN MPEC 

Before giving an outline of theoretical results and solution methods for the 
considered optimal design problems, a simple example will demonstrate how 
these bilevel optimization problems may become nonsmooth and nonconvex. 
This is an example modified from [Hilding et aI., 1999b]. 

Let us assume the following general structural optimization problem for the 
classical and the unilaterally constrained bar of Figure 3.1: 

• upper level: 
minj(z, u(z), SN(Z)) (3.78) 

• lower level: find u ERn, SN E Rq S.t. 

K(z)u(z) - N(z)T SN(Z) = p(z), (3.79) 

N(z)u(z) - b ~ 0, SN(Z) ~ 0, (3.80) 
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Figure 3.1. Optimal design problem for a classical and a unilaterally constrained bar 
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Figure 3.2. Nonconvexity of cost function (Case A). 

(3.81) 

For several choices of the cost function f (., .), one gets, in the case of a uni­
laterally constrained structure, nonconvexity or nondifferentiability as follows: 

Case A: Nonconvexity and local minima (see Figure 3.2) 
If one chooses the cost function: f(z, u(z), SN(Z)) = u, and, for instance, 

the following set of data: p=l, b=O, C=O, K(z) = z, Z E [0.5,2.0] 
Case B: Nondifferentiability (see Figure 3.3) 
If one chooses the cost function: f(z, u(z), SN(Z)) = IISNII, and, for in­

stance, the following set of data: p=1, b=0.5, C=l, K(z) = z, Z E [0.5,2.0] 
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Figure 3.3. Nonsmoothness of cost function (Case B). 

3.2.3 SOLUTION METHODS 
The tested solution methods for the bilevel optimal design problem are sum­

marized in the following. 

3.2.3.1 ERROR MINIMIZATION WITH REGULARIZATION 
• Upper Level: error minimization 

. {I T mm 2 (u(z) - uo) A (u(z) - uo) + (3.82) 

• Lower Level: LCP-BEM unilateral contact problem 

H(z)u(z) = G(z)t(z). 

u(z) ::; 0, t(z) ::; 0, u(zf t(z) = 0, 

Here the second term in (3.82) forces an iterative technique to find zolutions 
near the previous point z(k-l). The positive semidefinite matrix B acts as a 
regularization parameter. 
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3.2.3.2 ERROR MINIMIZATION - REGULARIZATION -
NONLINEAR EQUATION APPROACH 

• Upper Level: error minimization 

min {~ (u(z) - uo)T A (u(z) - uo) + (3.83) 

• Lower Level: LCP-BEM unilateral contact problem 

H(z)u(z) = G(z)t(z) 

¢(u(z), t(z)) = ° 
For example, for each element of ¢( u( z) , t (z) ) the Fischer-Burmeister function 

¢FB( -u(z), -t(z)) = vu(z)2 + t(z)2 - (-u(z) - t(z)). 

can be used. Other possibilities have been discussed in the previous Chapter 
with respect to the solution of the direct mechanical problem. 

3.2.3.3 ERROR MINIMIZATION - PENALTY FORMULATION 
• Upper Level: error minimization 

min {~ (u(z) - uo)T A (u(z) - uo) + (3.84) 

• Lower Level: LCP-BEM unilateral contact pbm 

H(z)u(z) = G(z)t(z). 

u(z) ~ 0, t(z) ~ 0, 

Here the complementarity relation uT t = 0 is introduced by means of a 
penalty term in the upper level problem (3.84). For an effective numerical 
implementation one starts with a small value of the penalty parameter /-L, finds 
a solution and subsequently refines it by taking larger values of /-L. The exact 
solution requires that /-L -+ +00. 
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3.2.3.4 ERROR MINIMIZATION - REGULARIZATION -
NONLINEAR EQUATION APPROACH - PENALTY 
FORMULATION 

• Upper Level: error minimization 

min {~ (u(z) - uo)T A (u(z) - uo) + (3.85) 

+ J.l1I¢(u(z), t(z))II} 

• Lower Level: LCP-BEM unilateral contact problem 

3.2.3.5 

H(z)u(z) = G(z)t(z) 

FURTHER NUMERICAL APPROACHES 
For completeness, one mentions here other numerical approaches for the so­

lution of mathematical programs with equilibrium constraints and some recent 
applications. 

Implicit function approach and nondifferentiable optimization methods have 
been studied in [Outrata et aI., 1998]. Under certain conditions, one can use ap­
propriate nondifferentiable optimization algorithms (e.g., the bundle algorithm) 
in connection with the mechanical problem. In practice, some more classical 
optimization technique may be used, for instance, in connection with a non­
linear equation approach for the unilateral contact problem (see [Stavroulakis, 
1995a], [Givoli, 1999]). 

Penalty techniques (cf. problems (3.84) or (3.85» in connection with iterative 
adjustments of the penalty parameter (heuristics) have been used in several 
recent applications. Details can be found in [Bolzon et aI., 1997], [Ferris and 
Tin-Loi, 1999], [Hilding et al., 1999a], [Tin-Loi, 1999a], [Tin-Loi, 1999b] and 
in the references given therein. See also [Has linger and Neittaanmiiki, 1996] 
and [Neittaanmiiki et aI., 1996] for relevant information. 

Theoretical results can be found, among others, in [Shimizu et aI., 1996], 
[Luo et aI., 1996], [Outrata et aI., 1998], [Facchinei et aI., 1999]. 

Nevertheless, one should mention that these recently proposed methods have 
not been tested on large scale, real life applications and that their numerical 
efficiency has not been proven. This observation has also been made in recent 
works on structural optimization problems. This is the main reason for applying 
in this work the previously outlined methods or heuristics and the soft computing 
tools mentioned in other parts of this book. 
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Chapter 4 

SELECTED SOFT COMPUTING TOOLS 

4.1 SOFT-COMPUTING VERSUS CLASSICAL 
COMPUTING 

Neural networks, genetic algorithms, fuzzy inference and filtering techniques 
are increasingly being used for the solution of identification and inverse prob­
lems. Their success lies in the fact that they have the potential to overcome 
certain problems due to ill-conditioning or scaling, nonconvexity and nondif­
ferentiability, as they arise in the considered applications and as they have been 
discussed in the previous Chapters. All these methods are known as soft com­
puting techniques. 

In this book, numerical results obtained mainly with neural networks and 
filtering techniques are used and compared with the ones obtained with more 
classical optimization algorithms. Every method has its own advantages and 
disadvantages. With respect to the inverse crack identification problem studied 
in this work, neural networks are very attractive because they allow an offline 
implementation. This means that one may produce the examples using a clas­
sical software for the modelling of the direct mechanical problem and then 
solve the inverse problem separately with the neural network. This technique 
has been very useful, especially in transient dynamic problems where the mod­
elling of the mechanical problem is time consumming. On the other hand the 
filtering-based iterative technique is very efficient for the solution of the inverse 
problem. 

This Chapter contains some elements of the applied soft computing meth­
ods, together with appropriate citations for further details. Additional citations 
relevant to inverse problems are given in the next Chapters. 

85 
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4.2 
4.2.1 

INVERSE AND CRACK IDENTIFICATION 

NEURAL NETWORKS 
BACKPROPAGATION NEURAL NETWORK 

MODEL 
An artificial neural network is composed of a certain number of processing 

elements which are highly interconnected into a specified pattern and hierarchy. 
If all parameters of the highly nonlinear network are given, the neural network 
can be assumed as a black-box computing device and in this sense it has been 
used, for instance, in nonlinear optimization problems [Cichocki and Unbe­
hauen, 1993], in structural analysis problems [Avdelas et aI., 1995], or fracture 
analysis problems in structural analysis [Theocaris and Panagiotopoulos, 1993]. 

In another context if to a given set of input data the corresponding wished 
output data are known, the whole set of input-output learning paradigms can 
be used to train the network (i.e., to adjust the variables which govern its be­
haviour) such as to be able to reconstruct the implicit highly nonlinear mapping 
between input and output variables. Thus, when training is completed, the net­
work responses with appropriate output values for each set of input variables. 
Since no specific model has been assumed for the mapping between input and 
output variables, the trained neural network provides us with a model-free es­
timator which simulates, for example, the mechanical behaviour of a structural 
component [Ghaboussi et aI., 1991], [Anderson et aI., 1993J, [Abdalla and 
Stavroulakis, 1995], [Theocaris and Panagiotopoulos, 1995J or of a structure 
[Berke and Hajela, 1992J, [Vanluchene and Roufei, 1990J. 

Let us consider first a simple processing element (perceptron) where a given 
input vector (Xl, ... , xn) is transmitted to the processing unit j from a number 
of imput nodes i = 1, ... , n through connection lines with synaptic weights 
(Wlj, . .. , Wnj). The signal received by the processing unit (node) j reads: 

n 

rj = L Xi Wij 

i=l 

(4.1) 

The :;ignal is processed in unit j through an activation function fj to produce 
an output (response) Z{ 

(4.2) 

If now a set of input-output variables [x, y 1 is given, the weights Wij, i = 
1, ... ,n can be modified (adapted) such as for the simple element to represent 
the [x, y] relation. A simple "Hebbian" error driven iterative learning technique 
reads: 

(4.3) 

where superscript k denotes the iteration step, TJi is the learning rate and <5(k) = 
y - z;k) (x) is the error between wished-actual output variable in the k-th step 
of the learning procedure. 
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This simple adaptive linear combiner (or element, ADALINE for short) with 
the perceptron learning algorithms (known as delta learning [Rumelhart and 
McClelland, 1986], or Widrow-Hoff learning rule [Brause, 1991]) can perform 
certain learning and classification tasks, limited to linearly separable objects 
(see e.g. [Brause, 1991],[Caudill and Butler, 1990], [Freeman and Skapura, 
1991]) 

A multilayer connection of the previously described adaptive elements makes 
the resulting neural networks capable of dealing with much more complicated 
objects, provided that efficient learning (i.e., internal variables adjusting) strate­
gies can be constructed. In this work we will use a specific class of feed-forward 
hierarchical networks where nodes are divided into layers and where connec­
tions are only permitted between nodes of adjucent layers. For this type of 
networks, an efficient class of learning algorithms exists which is based on back 
propagation of the error between wished and occuring output signals [Rumel­
hart and McClelland, 1986]. 

Let us consider a general feed-forward neural network where nodes are as­
signed to layers and connections are only permitted between nodes of consec­
utive layers. An arbitrary smooth input-output relation can be realized by this 
network. Appropriate adjustment of the internal variables (synaptic weights) 
in the course of supervised learning from the experimental data is performed in 
the steps of an iterative algorithm through back propagating the error between 
wished and calculated output in an opposite direction to the one the input signal 
is transmitted (feed-forwarded) into the network. 

The final goal is the determination of the values Wij. In this sense the 
back-propagation learning algorithms can be considered as an unconstrained 
optimization algorithm concerning a suitably constructed error function, with 
the synaptic weights of the network as the main variables, and appropriately for­
mulated for use in a distributed parallel processing environment (cf. [Cichocki 
and Unbehauen, 1993], p.122). The term back-propagation (or backprop) is 
commonly used for denoting the whole class of neural networks described in 
this paragraph, although it actually characterizes a class of learning algorithms. 
A feed-forward neural network computation in this class of networks proceeds 
as follows: 

ALGORITHM 4.1: Recalling procedure(generalization) 

1. Apply input vector Xin = (x~l), ... ,Xh11)) T to the input nodes of layer 
(1) 

2. Feed-forward the signal in layers 2, ... , m and in each processing ele­
ment compute: 

(4.4) 
k=l, ... ,nj_l 
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and apply the activation (transfer) function 

x~j) = fF)(r~j)) (4.5) 

3. VectorXout = (x~m), ... ,x~:))T is the response of the neural network 
to the input Xin 

The training of the neural network by the iterative back-propagation algorithm 
is based on the following error back-propagation and weight adaptation proce­
dure which considers one training example p from the set of available training 
examples T = {1, ... , t } with input-output data vectors denoted by [xp, Ypj, 
respectively: 

ALGORITHM 4.2: Basic functional block of learning algorithm 

A I . ( (1) (1))T h· d f I 1. pp y mput vector xp = xpl' ... ' xpnl to t e mput no es 0 ayer 
(1) 

2. Execute feed-forward signal processing phase as in recall algorithms 
(see step 2. of Algorithm 4.1) 

3. Calculate the error terms for the processing units of the output layer 
(last layer) by: 

.c(m) _ (. (m))f(m), ( m) ._ 
upi - Ypz - xpi i rpi' Z - 1, ... ,nm (4.6) 

(here, YP is the output vector of the training example p and j' ( ... ) de­
notes the first derivative of the output function, which is silently assumed 
to be differentiable) 

4. Back-propagate the error and calculate for each previous layer j = (m-
1), ... ,1 the error terms in all units of j-th hidden layer, i = 1, ... ,nj 

by: 
o(~) = f(j)' (rm) ""' O(j+l)w(j+l) (4.7) 
~ z ~ ~ ~ h 

l=l.. .. ,n(j+l) 

5. Update the weights of various layers by the general scheme: for all 
layers j = m, m - 1, ... ,1 and for all nodes of j-th layer i = 1, ... ,nj 

let the synaptic weight w}f) between the i-th node and all the nodes of 
the previous layer l = 1, ... ,nj-l be adjusted as 

(4.8) 

Here, 'fJ ~ 0 is the learning rate and w(t), w(t + 1) are the values of 
variable w at two sucessive iterative steps t, t+ 1 of the iterative learning 
process 
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Note that while in step 5 the network is assumed to be fully connected, i.e., 
all nodes of layer j-l are connected to each one of the nodes in layer j, the 
generalization to more flexible interconnection schemes is obvious. 

One pass through all available learning examples (i.e., execution of algorithm 
4.2 for all pET) is called a learning epoch. The error at this epoch is given 
by: 

_ 1 ~ ~ ( (m))2 
E - "2 ~. ~ Ypi - Xpi 

pET t=l, ... ,nm 

(4.9) 

Learning should continue with hopefully decreasing error with more training 
cycles until a reasonably small accuracy is obtained. 

Several more effective algorithms for training a feed-forward multilayer 
neural network are described in the specialized literature, including among oth­
ers batch mode or off-line training, addition of momentum (inertial) terms to 
enhance convergence etc:. [Brause, 1991], [Cichocki and Unbehauen, 1993]. 
Nevertheless, one must keep in mind that learning in a neural network is gen­
erally a time-consuming task and, therefore, the size of both the network and 
the training examples must be kept the minimum necessary. Thus, engineering 
experience and a set of good, representative experimental data must be used 
as learning examples. As a closing hint for further research, we mention here 
that artificial neural network computations are best suited for a parallel com­
puter environment and even permit hardware implementation [Cichocki and 
Unbehauen, 1993]. 

4.2.2 NEURAL NETWORK MAPPINGS, MOTIVATION 
AND APPLICATION ON INVERSE PROBLEMS 

An artificial neural network learns and calculates (resp. interpolates or ex­
trapolates) a mapping R n ::::} R m for which no explicit relation is available. 
A set of input-output examples are used for the training of the artificial neural 
network. 

The biological motivation comes from nature, and especially from several 
functions of animals or human beings (see, e.g., Fig. 4.1) For the computer 
realization, a feed-forward nonlinear network is constructed (see Fig. 4.2). 
Nonlinear elements are attached at each node of the element. They are charac­
terized by their activation functions (see, Fig. 4.3). 

From the several features of neural network processing of mappings one 
may mention that multiple layers permit the representation of more complicated 
mappings than single layer networks. 

For instance, in classification of data in lRn, more internal layers allow for 
the differentiation of nonconvex data sets (cf. Fig. 4.4, Fig. 4.5). 

• given learning paradigms (input-output pairs) 
{ri,Z-d,i=l, ... ,l 
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retina neural nonlinear 
connections filter 

Figure 4.1. Eye-brain link as a biological motivation of neural network mappings 

output layer 

hidden layer 

input layer 

output 

activation 
function 

weights 

inputs 

Figure 4.2. Realization of a neural network function 

activation functions 

identity 
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logarithmiC 
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binary 
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Figure 4.3. Examples of activation functions 
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Figure 4.4. Classification of data belonging to convex sets 

e.g., o;A and not B 

Figure 4.5. Classification of data belonging to nonconvex sets 

• see neural network output as function of the connection weights 

W = {Wij ... } : o(ri' W) 

• error function 
Etatal = ! (o(ri' W) - Zi)2 = E[ 

• learning problem ("curve fitting"): 
Find weights W to minimize error E(W) based on the given examples 

Within the training phase of the back-propagation neural networks, one actually 
performs an iterative, distributed minimization of the error function (see Fig. 
4.6) 

An artistic interpretation of the crack identification performed by means of 
backpropagation neural networks is shown in Fig. 4.7. 

Finally, the whole system of learning and recalling procedures for the inverse 
crack identification based on neural networks is schematically explained in Fig. 
4.8. Numerical examples of this method for crack identification tasks based on 
static and dynamic measurements are given in the last three Chapters of this 
book for static, harmonic and transient dynamic loadings respectively. 

The back-propagation neural networks used for the numerical experiments in 
this work have been modelled on a serial computer. The Neural Network Tool-
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input 
r, 

FEED FORWARD SIGNAL 
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output whished 
o(ri,w) output 

input hidden output 
layer layers layer 

( 

BACKPROPAGATEERROR 

Figure 4.6. Distributed, iterative error minimization during neural network learning 

'see' measurements 

data processing 
in neural network 

predict 
crack 
variables 

Figure 4.7. Artistic interpretation of neural crack identification 

box of MATLAB has been used for this purpose (see more details in [Demuth 
and Beale, 1994]). 

4.3 GENETIC ALGORITHMS 
The nonconvex optimization problem which arises during the inverse flaw 

identification problem may have several local minima, as it has been shown by 
means of numerical examples in the next sections. Thus, a global optimization 
method is required for its numerical solution. A genetic algorithm has been 
tested. 

In the framework of the genetic optimization, the set of unknown variables 
ofthe problem (i.e., its crack or flaw characteristics, its phenotype) are encoded 
as a chain of binary variables (cf., chromosomes). Furthermore, due to the 
stochastic nature of this approach, a population of test flaws is assumed. For 
each set of values of the flaw variables, the error function e(z), that is the 
difference between measured and calculated results in an appropriate norm, 
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Figure 4.8. Scheme for computational mechanics - neural network crack identification 

is calculated. For a least square error function, see (3.72). Each of this set 
constitutes an individual in this population. In accordance with the terminology 
used in genetic optimization, the minimization problem is transformed into a 
maximization problem. Thus, instead of an error function, a fitness function 
arises, whose maximum is sought. 

The procedure is further partially inspired by the Darwin's rule of survival 
through natural selection. In the selection step, individuals with better fitness 
values are given a higher probability to be mated and to inherit their characteris­
tics to the next generation. A crossover operator permits parts of the encoding 
string of the parents to be exchanged within the reproduction step. Finally, 
arbitrary parts of the information are changed at random (mutation) during the 
creation of the new generation. Sometimes, very good individuals are allowed 
to pass through the whole procedure unchanged (elitism), i.e., they are copied 
as they are in the next generation. 

Some technical details of the application, in particular, the points that af­
fected the numerical performance of the examined examples, are briefly ad­
dressed here. More information may be found in the specialized literature (for 
instance, see [Goldberg, 1989]). One may also consult the short descriptions of 
genetic algorithm aplications to shape optimization problems, see, for example, 
[Haslinger and Jedelsky, 1996], pp. 261-263. 

A first implementation point concerns the transformation of the error mini­
mization problem to a fitness maximization one. The error measure e(z) ofthe 
crack or flaw identification problem takes the role of the environmental factor 
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in a genetic population evolving in nature. As fitness function, the following 
objective can be used: 

h (z) = { efzy for e(z) F 0, 
M for e(z) = 0, 

(4.l0) 

where M is a large positive number. Another variant has also been tested (see, 
Goldberg (1989), p. 76): 

f (z) = { M - e(z) for e(z) < M, 
2 0 for e(z) = M. (4.11) 

Moreover, the encoding strategy should be chosen with care. As it transforms 
the continuous variable optimization problem (where the flaw parameters z are 
the unknown variables) into a discrete one, the number of, e.g., binary codes 
used for the chromosome mapping of each variable dictates the accuracy of 
the results. A fine discretization of the variables space, which requires larger 
binary codes, leads to a higher accuracy, but it is also connected with a higher 
computational cost. 

It should be mentioned that genetic algorithms are general purpose, proba­
bilistic optimization methods which tackle directly a multi-extremum noncon­
vex (global) optimization problem. Only the value of the function is required, 
thus the procedure is applicable to nondifferentiable problems as well (cf., 
[Hajela, 1990]). Even discontinuous functions or optimization problems with 
discrete variables may be considered (cf., recent engineering applications de­
scribed, among others, in [Rajeev and Krishnamoorhty, 1992], [Rajeev and 
Krishnamoorthy, 1997], [Grierson and Pak, 1993], [Huang and Arora, 1997]. 
One should mention, however, that there are also deficiencies in this approach. 
First, due to their generality, generic algorithms require enough computer time. 
Fortunately, they permit a high degree of parallelization (see, e.g., the results 
in this direction reported in [Adeli and Kumar, 1995]). Moreover, since in a 
genetic process all available information is stored in the genetic information of 
the living generation, a fairly large amount of information which is produced at 
the previous iterative steps of the procedure (the several function evaluations) 
is being lost. 

A number of complicated problems in structural optimization have recently 
been solved by using genetic algorithms. For instance, optimal design of lami­
nated composites including buckling constraints is studied in [Riche and Haftka, 
1993]. In this paper, an alternative three-alphabet encoding is used which is 
more appropriate for the considered application. Optimal shape design prob­
lems are treated, among others, in [Haslinger and Jedelsky, 1996] and in [An­
nicchiarico and Cerrolaza, 1997]. Discrete optimization problems in structural 
analysis has been considered in [Rajeev and Krishnamoorhty, 1992] and [Huang 
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and Arora, 1997]. An application on form finding problems in slack cable net­
works and similar structures which undergo large displacements has been done 
in [Hartmann, 1996], where the genetic algorithm scheme has been used for the 
solution of the potential energy minimization problem of the structural analysis 
application. 

In the area of inverse problems in mechanics, Doyle presented in a number 
of papers an approach for the localization of defects and flaws in structures. 
First, he used dynamic results which are produced by a spectral finite element 
program in order to estimate the unknown excitation loading. Then, by making 
assumptions on the position and shape of the flaw, he used as an error measure 
the difference between two predicted loadings, which are produced by two 
different assumptions about the unknown defect. Obviously, if this difference 
is zero, the assumption is correct and the defect is correctly identified. Details 
of this application can be found in [Doyle, 1994], [Kannal and Doyle, 1997] 
and in the references given therein. 

The genetic algorithm, which has been used in the numerical experiments, 
has been realized by means of a FORTRAN code taken from [Carroll, 1996b], 
[Carroll, 1996a]. 

4.4 FUZZY AND NEURO-FUZZY INFERENCE 

Fuzzy inference methods are best suited for the processing of information 
where some existing experience is available in the form of rules. If this expertise 
is available, then new features or measurements can be combined to produce the 
required result. This methodology is very interesting for the automatization of 
existing knowledge which can not be integrated into a modelling environment 
but which is well documented and tested from human operators. 

Unfortunatelly, this additional empirical information can not be used directly 
in the method we have choosen to study the inverse problems. In fact, we 
try to minimize some deviations from measured results and computed ones. 
Experience can help us choosing the measurements to be considered in the 
minimization or even give us appropriate initial points (approximations) to 
start iterations. After that point a black-box, automatic strategy is choosen to 
solve the inverse, identification problem. 

Nevertheless, there is a combination of fuzzy rules with automatic adjust­
ment, which seems to be interesting for the blind, automatic study of inverse 
problems as well. The unknown rules are determined iteratively, based on the 
available information (learning examples), by means of neural network tech­
niques. This adaptive network based fuzzy inference is used here, as it is 
available within the MATLAB software (see [Jang, 1993] for more details. 
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4.5 CLASSICAL AND EXTENDED KALMAN FILTER 
AND IDENTIFICATION 

4.5.1 REVIEW 

Filters, in general, and in particular the extended Kalman filter (EKF) belong 
to the area of stochastic estimation and optimization. They are considered to be 
robust, error-insensitive signal processing methods. For details, the reader may 
consult the original publications [Kalman, 1960], [Kalman and Bucy, 1961] 
and, among others, [Catlin, 1989] and the references in the other application­
oriented papers cited later in the text. An EKF approach which copes with the 
parameter estimation problem for nonlinear systems is used in this paper for 
the solution of inverse, crack identification problems in mechanics. 

It is worthnoting that the effectiveness of stochastic approaches and of Kalman 
filters in engineering has been recognized early. See, in this respect, the cali­
bration of structural elastoplasticity models [Maier et aI., 1982], [Bittanti et aI., 
1984] and the geotechnical applications reported in [Cividini et aI., 1983]. 

Several applications of the Kalman filter method or of more advanced fil­
tering techniques on inverse problems in engineering mechanics and structural 
analysis have been reported in recent publications. Most of them involve some 
automatic boundary or finite element routines for the successive reanalysis of 
the mechanical problem along the iteration steps of the filter. Thus, unknown 
circular or elliptical defects, partially combined with an unknown boundary 
shape for two-dimensional elastostatic applications modelled by the boundary 
element method are identified in [Tosaka et aI., 1995]. Reference [Utani and 
Tosaka, 1993] deals with the identification of a concentrated heat source in a 
steady-state heat conduction field and with the identification of material proper­
ties and of unknown boundary values in two-dimensional isotropic elastostatics. 
EKF with boundary element methods are used in this work. A finite element, 
Kalman filter approach for the estimation of elastic material properties from 
measured surface displacements in elastostatics (geotechnical applications) is 
studied in [Murakami and Hasegawa, 1993]. Comparisons with earlier works 
and discussion on the effect of the off-diagonal terms of the error covariance 
matrix on the performance of the method are also given. An application on the 
identification of the material constants of the Gurson model for porous elastic­
plastic materials using pseudoexperimental (finite element generated) data is 
reported in [Aoki et aI., 1997]. 

Some recent non structural applications of the EKF-BEM methodology are 
mentioned here, so that interested readers can find there more information. A 
calibration procedure for groundwater flow problems is studied in [Harrouni 
et aI., 1997] by means of EKF techniques. Both steady state and transient 
groundwater flows are considered. They are modelled by means of the so-
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called dual reciprocity boundary element method (DRBEM). Groundwater flow 
identification problems are also treated in [Ferravesi et aI., 1996]. 

Boundary shape identification in steady state heat conduction problems 
[Tanaka et aI., 1998] and noise source identification in acoustics [Tanaka et aI., 
1999] represent two more areas of successfull recent applications. For other ap­
plications on inverse heat conduction problems the reader is referred to [Scarpa 
and Milano, 1995], [Chen et aI., 1996] and [Tuan et aI., 1997]. The latter ref­
erence [Tuan et al., 1997] contains an extension of the method for use with un­
known input, which is also iterativelly estimated within the proposed algorithm. 
Similar techniques may also be useful for more general health monitoring tasks 
in mechanics with unknown or partially known input (cf., the ambient vibration 
tests). In particular, the low computational cost of this method makes it promis­
ing for on-line monitoring and identification applications. These problems will 
not be discussed in this paper. 

Finally, it should be mentioned that Kalman filter approaches may be used in 
connection with other advanced signal processing techniques to enhance their 
effectiveness or to enlarge the area of their applicability (see, among others, 
[Lou and Perez, 1996]). 

The Kalman filter was originally derived for linear systems [Kalman, 1960], 
[Kalman and Bucy, 1961] but it was subsequenly extended to cover nonlinear 
systems as well by means of a local linearization strategy, as it is outlined in 
the sequel. 

4.5.2 DESCRIPTION 
Let us consider that one has some measurements (i.e., observations) y of 

the parametrized mechanical problem. In mechanics, one usually measures 
displacements, strains, stresses or their time derivatives, so that one has, in 
general, the relation y = f (u), where f (.) is an appropriate linear or nonlinear 
function. For notational simplicity let us assume that some elements of vector 
u are measured, so that we can write y = s(u) with obvious notation. 

For a given value Zk of the parameter z, the observation is written in the 
form: 

(4.12) 

where l/k is the observation noise, which is considered to be a white noise with 
zero mean value and of known covariance Q. 

The plant of the system is, in general 

( 4.13) 

where Wk is the plant noise. In the estimation of static values studied in this 
work, the plant dynamics simplify into: 

(4.14) 
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The filter-driven identification algorithm has the following steps: 

Step 0 Set iteration counter k = 0 and choose an initial value of the parameter 
Zo and a given 'covariance' matrix Q. 

Step 1 Iteration k = k + 1 
the available observation (4.12) is assumed in the linearized form: 

where the linearization matrix at step k reads: Sk(Zk-d = (~~) Z=Zk-l 

Only matrix Sk is calculated by using the estimate of Z which is available 
from the previous step. 

Step 2 the new estimation of the state, i.e., the new value of Z is given by: 

(4.16) 

where Yk is the wished value of the observation (measurements) and 
S (Zk-l, t) is the attained value of the observation (measurements) based 
on the estimation of the state values available from the previous iteration 
step. Moreover, matrix Bk is the filter gain, which may be calculated using 
Kalman filtering theory or other filtering techniques. The Kalman filter gain 
reads: 

( 4.17) 

where R is the error covariance of the measurements or an estimate of it. 
Nevertheless, the following relatively simple projection filter [Tosaka et al., 
1995] leads also to good results for the studied problem: 

Bk = (SIQ+Sk)+ SIQT, ( 4.18) 

where superscript + denotes the Moore-Penrose generalized inverse of a 
matrix. 

Step 3 If Z converges, then stop, otherwise continue iterations with Step 1. 

The comment about the possibly multivaluedness, which was made in the 
introduction, should be considered in the interpretation of the sensitivity matrix 

Sk. 
For the numerical examples presented in Chapter five, the simple filter gain 

(4.18) gave satisfactory results. The whole algorithm has been programmed 
in FORTRAN and has been integrated with the home-made structural analysis 
software. From the gained numerical experience we can conclude that the 
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choice of a value for the matrix Q (and R, if applicable) does not influences the 
results. More complicated variants ofthe above basic algorithm with adaptively 
defined Q have been proposed in the literature and may be advantageous for 
other classes of problems. 
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Chapter 5 

STATIC PROBLEMS 

5.1 INTRODUCTION AND LITERATURE SURVEY 

The subject of the proposed work is the development and the testing of 
a solution technique for non-destructive crack identification problems in the 
presence of frictionless unilateral effects along the crack. Since the adopted 
model allows for the closure of the crack under certain extemalloading, several 
aspects of the inverse elastostatic analysis problem must be re-examined. In 
fact, an even partially closed crack can hardly be identified, and to overcome 
the above mentioned effects, the tactics of considering various loading cases is 
proposed. 

In general, identification (inverse) problems are formulated as appropriate 
optimization problems for the difference between the measured (or computed) 
and the desired responses within the space of the variables which define all 
the possible different configurations of the considered structure. In this frame­
work, the direct problem, i.e., in the considered case the elastostatic unilateral 
contact problem, is taken as an additional set of constraints, or it is hidden into 
the generally nonlinear relation between the design variables and the measured 
(computed) response. For these problems, the term optimization under equi­
librium constraints is currently being used. Mathematically, the problem has 
certain similarities with structural optimization problems, as it has been dis­
cussed in Chapter three. In the course of solving inverse problems by following 
this approach, it is obvious that the direct problem has to be solved several 
times, as it is required by the algorithm used for the solution of the optimization 
problem. Moreover, if sensitivity informations exist for the direct problem, it 
is possible to use more complicated and usually more effective optimization 
software. This way is adopted in recent works dealing with inverse elastostatic 
analysis problems and, in particular, with crack identification problems. Nev-
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ertheless, since small variations of a certain structural parameter may lead to 
either large or small variations in the static response depending on the param­
eter's position or type, and, since multiplicity of the solutions for the inverse 
problem may also arise particularly if a restricted small number of measure­
ments is used, the problem is generally an ill-posed one ([Natke, 1991]. Both 
the above mentioned problems are amplified for unilateral contact problems, 
which in addition are nondifferentiable (non smooth) problems. 

Concerning the identification problem (inverse problem), the previously out­
lined peculiarities (mainly, the lack of differentiability) lead to generally non­
smooth and possibly nonconvex optimization problems. The numerical solution 
of nondifferentiable optimization problems is a difficult task even if specialized 
algorithms are applied. Moreover, possible nonconvexity is connected with 
the appearance of local minima which can not easily be bypassed by local 
optimization strategies. For these reasons, innovative global optimization al­
gorithms (like the ones based on neural networks or on genetic algorithms or 
iterative ones based on filter techniques) may be needed. 

In this Chapter, a two-dimensional speciment is considered which contains 
an unknown crack. The unknown crack will be idealized, at the first stage of 
the investigation, by a certain number of parameters, e.g., the length of a linear 
crack, the coordinates of the middle point, the direction angle with respect 
to the global coordinate system used. It is assumed that certain boundary 
displacements or tractions can be measured for various external loading. The 
direct mechanical problem is solved numerically by the previously outlined 
BEM-LCP method (see Chapter two). For the identification (inverse) problem 
three different methods have been tested: the use of classical optimization 
algorithms, the use of neural network based optimization techniques and the 
use of filter-based iterative optimization. The inverse problem consists in the 
determination of the parameters which define the unknown crack, and can be 
formulated as a minimization problem with respect to the output error or to the 
equation error (in the case of smooth problems which can be defined by means 
of equations; see also later for a comment on this point) with free (design) 
parameters. For classical structures, e.g., [Hajela and Soeiro, 1990] use static 
response and eigenvectors for the damage detection of elastic structures which 
are analysed by finite element techniques. The method applied here belongs to 
the class of least square identification methods using the partial output residual. 
More details on structural identification problems can be found in [Natke, 1991]. 
The few experiences with non-linearly behaving structures are reviewed in 
[Natke, 1993]. 

Boundary element method techniques and classical minimization algorithms 
have been used for the identification of elliptic flaws in [Mitra and Das, 1992] 
where all defects are assumed to be elliptic ones and steady heat conduction 
problems are examined. In [Tanaka and Masuda, 1986], the inverse elasto-
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static analysis problem is considered where the shape of the unknown crack is 
identified by boundary measurements. 

The work of [Tosaka et al., 1995] deals with the identification of elliptical 
defects in 2-D or spherical defects in 3-D problems, where the classical nu­
merical minimization scheme is replaced by a Kalman filtering based iterative 
algorithm which reduces substantially the computational effort. 

Boundary element formulation and numerical optimization has been applied 
for the determination of residual stresses and of contact pressure in several 
recent publications [Zhang et al., 1995], [Huang and Shih, 1997], [Collins et aI., 
1997], [Laermann, 1998], [Huang and Shih, 1999]. Displacement or strain 
measurements near the unknown sources (due to the Saint Venant's effect) 
are used. Non-classical optimization techniques have been applied on flaw 
detection, for example, genetic algorithms have been tested in [Louis et aI., 
1997]. Related applications on static inverse problems can be found in [Pandey 
and Barai, 1995], [Yuan et al., 1996], [Cao et al., 1998]. 

Use of different physical measurements have also been considered in the area 
of crack or flaw detection. The corresponding inverse problems may be solved 
by optimization or more complicated data processing techniques. As repre­
sentative examples, let us mention the detection of surface-breaking cracks 
bz steady-state electrical boundary measurements [Barenstein et aI., 1997], 
the burried crack determination via the reciprocal gap function or the use of 
steady-state heat condution data [Abda and Kallel, 1999], flaw detection in 
steel pipes using magnetic flux leakage techniques and neural network post­
processing [Altschuler and Pignotti, 1995], [Gavarini et aI., 1996], [Gavarini 
et al., 1998], eddy current defect characterization using neural networks [Udpa 
and Udpa, 1990] and the inverse geometric heat conduction problem studied in 
[Kassab and Pollard, 1995]. 

In the problem studied here, the structure (state) is governed by a variational 
inequality, or, in the case of symmetry, by an equivalent inequality constrained 
potential or complementary energy minimization problem. Thus, the iden­
tification problem, which can be written as an optimal design problem with 
a state governed by a variational inequality, is in general a nondifferentiable 
and possibly nonconvex problem (cf. e.g. [Has linger and Neittaanmili, 1996], 
[OutrataetaI., 1998], [Stavroulakis, 1995a], [Stavroulakis, 1995b]. In fact, non­
smooth optimization techniques [Outrata et aI., 1998], [Stavroulakis, 1995a], 
[Stavroulakis, 1995b] genetic algorithms [Chen and Ou, 1995], Kalman filter­
ing iterations [Tosaka et aI., 1995], and neural networks [Oishi et aI., 1995] 
have been applied for the solution of related problems or problems with com­
parable complexity. The simultaneous consideration of more than one loading 
cases is expected to be necessary as well, since then, it is more feasible that 
the nonlinear crack is acrivated and manifests itself in the measurements. The 
properties of the gain function for bilateral and unilateral cracks and a neural 
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network approach for the inverse problem are presented in the following. More­
over some results obtained with classical optimization and with a filter-driven 
algorithm are presented. Nevertheless, it must be emphasized that, to the best 
of the author's knowledge, there does not exist enough experience with inverse 
(identification) problems for non-linearly behaving structures. In this respect, 
the here reported work should be considered as a first attempt in this direction. 

5.2 OUTPUT ERROR FORMULATION OF THE 
INVERSE PROBLEM 

Let a given structure be considered which contains an unknown crack. The 
crack is characterized by a set of parameters z = [Z1' ... , zmJT. For instance, 
the coordinates of the crack center, the length of the crack, and the inclination 
of the crack is a set of appropriate parameters for the identification of a straight 
crack. Let, moreover, the response of the structural system for a given loading 
pi, l = 1, ... , l1 and for a given crack z be given by the vector f(z, pi) = 
[h, .. . , Tm1 JT, where m1 is the total number of d.oJ's assumed. For instance, 
displacements of various boundary nodes along certain directions or specific 
components of the stress tensor may compose the response vector f. The 
response of the examined structure with a known crack subjected to the same 
loading pi is denoted by fo (pi). 

The inverse problem is formulated as a minimization problem for a scalar 
performance error function: 

11 

~err(z) = L (lIf(z, pi) - fo(pl)lI) (5.1) 
1=1 

Here 11·11 is an appropriate norm in Rml. Usually the L2 norm is adopted (least 
square identification). Moreover, the sum operator over all available loading 
cases forms a compromise gain function which transforms the multiobjective 
optimization problem to a classical one. Other choices can also be used. 

With respect to classical, linearly elastic structures and in view of using nu­
merical techniques for the solution of a minimization problem with the objective 
function (5.1), the following comments must be done. Recall that this situation 
arises in the here examined crack identification problem when a crack without 
unilateral effects is assumed. 

The performance of identification problems using static loadings results de­
pends on the choice of the response values which are used (number and position 
of measuring points) and of the loading case( s) considered [Hajela and Soeiro, 
1990], [Banan et aI., 1994], [Sanayei and Saletnik, 1996]. 

The numerical solution of the minimization problem requires the evaluation 
of the gain function (5.1) for a large number of vectors z. The evaluation 
of the gradients of the gain function, which will allow for the use of more 
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sophisticated and usually more effective numerical optimization algorithms, 
requires the solution of sensitivity analysis problems for the evaluation of the 
sensitivities g~ and eventually of higher derivatives. 

In principle, apart from scaling questions and from the efficiency of the 
specific implementation, no serious theoretical problems are expected to arise, 
since the gain function (5.1) is a convex function of z ( as a composition of the 
convex function q>err(f) and the linear function f(z). 

A small bibliography review and our restricted numerical experience shows 
that classical (bilateral) cracks can be identified quite effectively by means 
of the previously outlined approach (see e.g. [Tanaka and Masuda, 1986], 
[Nishimura and Kobayashi, 1991], [Mitra and Das, 1992], [Mellings and Ali­
abadi, 1993], [Mellings and Aliabadi, 1994], [Kobayashi, 1994], [Meltzer and 
Eckhold, 1995], [Burczynski et al., 1997]. 

For unilateral contact state problems and in general for structures governed 
by nonlinear and nondifferentiable relations the following additional difficulties 
arise. 

First, the response of the state problem f(z), i.e., of the structural analysis 
problem is a nondifferentiable function of the parameters z. This can easily be 
explained if one considers that the unilateral effects are expressed by inequal­
ities. Thus, sensitivities only along given directions can be calculated and the 
sensitivity matrix must be interpreted here in a generalized sense, i.e., its ele­
ments are set-valued mappings ( see, e.g., [Cottle et aI., 1992], [Outrata et aI., 
1998], [Alessandri and Tralli, 1995]). 

Moreover, the gain function (5.1) is in this case a generally nondifferentiable 
and nonconvex function, since the inner component of the composite function 
q>(f), i.e., the function f{z) is, in general, nondifferentiable and has unknown 
convexity characteristics (see, e.g., [Has linger and Neittaanmilld, 1996], [Out­
rata et aI., 1998], [Chen and Ou, 1995], [Stavroulakis, 1995a], [Stavroulakis, 
1995b D. To the author's knowledge, no general purpose algorithm exists, at 
the present, which guarantees convergence to a global solution of the problem 
and which effectively tackles all above mentioned problems, i.e., ill-posedness 
of the inverse problem, lack of convexity and of differentiability. 

In view of the complexity of the available nondifferentiable optimization 
algorithms and due to the fact that our preliminary software is not optimized 
with respect to the computational performance, further research in this direction 
has not been undertaken until now. The problem is attacked by a derivative 
free optimization procedure which is based on the neural network theory and 
which has certain ability to tackle nonconvex problems as well. In the sequel 
a classical optimization approach has been tested and a filter-driven technique. 
For the studied problem the last approach is the most effective with respect 
to both it's ability to solve the problem for partially closed cracks and to the 
computer time requirements (number of iterations). 
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5.2.1 LOCAL OPTIMIZATION APPROACH 
In static problems the following logarithmic scaling of the error function 

(S.1) has been found advantageous: 

<I> "'_',g(o) = log {E (IIr(o, pI) - ro(p') II) + , } , (5.2) 

with a small positive value E > 0 added to avoid values going to infinity. 
The optimization problem with respect to the functions (S.1), (S.2) has been 

solved by means of a general purpose numerical optimization program. 
The code E04UCF of the NAG library is used, which is an algorithmic 

realization of Powell's optimization technique. Only function evaluations are 
required from this program. It is an implementation of the sequential quadratic 
programming method where, internally, the Hessian matrix is approximated by 
means of finite difference approximations. Moreover, significant iterations in 
this procedure are called major steps while all other iterations which are used 
to correct the local quadratic approximation of the function are termed minor 
steps. 

In principle, a code which uses also higher order information of the er­
ror function (e.g., gradients) would lead to a higher numerical effectiveness. 
Nevertheless, in that case, a sensitivity analysis of the structural problem with 
respect to the crack parameters has to be performed. For unilateral cracks the 
calculation of this sensitivity information may become a nontrivial task since the 
responce of the structure may be nondifferentiable (see, among others, [Bends0e 
and Sokolowski, 1987], [Baniotopoulos, 1991], [Stavroulakis, 1995a] and the 
review paper [Hilding et aI., 1999] with the references given therein). 

More sophisticated numerical optimization techniques can also be applied 
(for instance, see the Levenberg -Marquardt method used in [Schnur and Zabaras, 
1992], the regularization techniques, [Baumeister, 1987], [Maniatty and Zabaras, 
1994], [Kaplan and Tichatchke, 1994] etc.). Relevant information is included 
in [Has linger and Neittaanmiiki, 1996], [Neittaanmiiki et aI., 1996] as well. 

5.2.2 NEURAL NETWORK SOLUTION METHOD 
Hierarchical, feed-forward neural networks are used here. They consist of a 

certain number of highly interconnected processing units (nodes of the network 
configuration) which are assigned to a number of consecutive layers (hierarchy) 
from which the first one (input layer) receives a signal and the last one (output 
layer) transmits a response. An internal signal is transmitted (feed-forwarded) 
from one layer to the next one in the hierarchy and is transformed by the follow­
ing rule: each processing unit sums the input from the units of the previous layer 
to which it is connected, magnified by an appropriate weight which resembles 
the synaptic strength in neurous connections, and after passing it from an activa-
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tion function (response function), transmits it to the processing units of the next 
layer. This highly nonlinear system is theoretically able to reproduce (curve 
fit) any continuous mapping between the input values and the output values, 
provided that its dimension is large enough and that appropriate values of the 
synaptic weights have been assigned. The dimension of the network comprises 
here the number of layers, of nodes, and of the connection lines which must 
be enough to permit a successful neural network implementation. Network 
configuration and dimensioning is done at the present by trial-and-error, since 
no theoretical results are available. A set of examples (input-output variables) 
are presented to the network and the weights are adjusted by appropriately con­
structed algorithms (training phase) such as to minimize some error measure 
with respect to the choosen learning data. In this way, a generalized data fitting 
procedure is obtained. 

For more details on neural network theory the reader is refered to the spe­
cialized literature (see, e.g., [Brause, 1991], [Cichocki and Unbehauen, 1993], 
[Nauck et aI., 1996]) and to the short introduction given in Chapter four. For 
a general discussion of various applications in structural mechanics see, e.g., 
[Berke and Hajela, 1992]. Damage identification problems by means of static 
data have been treated among others in [Wu et aI., 1992] and by means of 
dynamic data among others in [Rhim and Lee, 1995], [Oishi et aI., 1995]. 

Here, a multi-layer back-propagation error driven neural network is used to 
learn the relation 

r(z,pl) ---+ z (5.3) 

for a given value of loading vector pl, or the relation: 

¢(r(z, pi), i = 1,2, ... ,I) ---+ z (5.4) 

for several loading cases, where ¢ is an appropriate vector-valued function. 
By means of the direct BEM-LCP solver described previously in this pa­

per, a number of learning paradigms (i.e., couples of input-output vectors) is 
constructed: 

(5.5) 

These data are used to teach the neural network the unknown relation (5.3) 
or (5.4). 

Recall here that the main idea behind the back-propagation neural network 
model is that (e.g., [Oishi et aI., 1995]) a specific norm between the network's 
output z~, for inputs equal to f( Zj, pi), respectively, and the known outputs Zj, 

for j = 1, ... , k, is iteratively minimized during the learning phase. In this 
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sense, a neural network identification procedure is classified as a nonparametric 
structural identification method, because no parametric model is assumed for 
the solution of the identification problem itself [Natke, 1993]. Nevertheless, 
this step is hidden into the preparatory phase of producing the required input­
output data from a parametric numerical investigation which uses the direct 
method solver. Moreover, the neural network model itself has inner variables 
which are adjusted in the learning procedure. 

Later, in the production mode, the variables of the nonlinear network have 
fixed values, equal to the ones determined at the learning phase. They are 
used to reproduce the relation r -+ z, i.e., for a given set of measurements r 
the network gives a prediction for the variables which characterize the internal 
crack. 

5.3 NUMERICAL EXAMPLES OF DIRECT 
PROBLEMS 

The first two examples will demonstrate basic effects arising in unilateral 
contact problems in mechanics. They have been used as test problems for 
several unilateral contact algorithms in [Goeleven et aI., 1997], where more 
details and comparisons between different solution algorithms can be found. 

Let us consider a quadrilateral cantilever with horizontal length equal to 15. 
and vertical length equal to 3.0. All quantities are measured in compatible units. 
The structure is composed oflinearly elastic material with shear modulus 1 * 105 

and Poisson's ratio 0.3. A plane stress problem is considered. The structure 
has been discretized by Quadratic Boundary Elements (by using the program 
ELQU ABE, described in the book of [Brebbia and Dominguez, 1989]. At 
each horizontal boundary, one has 15 boundary elements with a total of 31 
nodes and at each vertical part there exist 3 boundary elements with 7 nodes, 
respectively. At the upper part of the structure (part CD), a vertical loading 
which produces a boundary traction equal to 1.0 (negative, i.e. downwards) at 
each node is assumed. The displacements of the right vertical part of the struc­
ture (part AB) are prescribed to be equal to zero (classical support boundary). 
The lower horizontal part of the structure (part AB) is subjected to a frictionless 
unilateral contact law. An initial gap between this boundary and a horizontal, 
rigid support is also considered for simplicity. A total of 28 nodes have been 
used for the unilateral contact boundary. We consider an initial gap for the 
whole unilateral interface which is equal to 0.001, 0.0025, 0.005, 0.0075, and 
0.010, respectively. The characteristic values of the unilateral contact interface 
are shown in Figs. 5.2-5.4. In Fig.5.2 the distance of the deformed structure 
from the rigid support is shown, in Fig.5.3 the actual vertical displacement 
components of the nodes at the unilateral contact interface are plotted (note 
that inequality constraints due to various level of obstacles are satisfied) and in 
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Figure 5.1. Configuration of the unilateral cantilever problem. 

Fig.S.4 the respective nodal contact forces are given. In all these figures the 
contact and separation areas are clearly identified. 
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Figure 5.4. Nodal contact tractions for various initial gaps 
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Figure 5.5. Elastic unilaterally supported stamp. 

An elastic stamp which is unilaterally supported on a rigid support is con­
sidered (see Fig. 5.5). The dimensions and the elastic material constants of 
the elastic stamp are the same as the ones of the previous (cantilever) example. 
Vertical nodal forces on the upper boundary DC (a total of 31 nodes) are con­
sidered. The unilateral contact boundary AB is discretized by 31 nodes. Due 
to symmetry, results for one half of the boundary are presented. 

The initial gap is due to the curved shape of the rigid support. A quadratic 
function is used for this purpose. The value of the initial gap at the center 
(node 16) is equal to zero and at the boundary (node 1) is equal to 0.00196. A 
vertical loading is applied on the upper boundary. The elastic stamp comes in 
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unilateral contact with the rigid support. For various loading levels, the contact 
area varies, as it is demonstrated in Fig. 5.6. 

5.3.1 STATIC UNILATERAL CRACK ANALYSIS 
First, the results of a two-region LCP-BEM analysis of a unilateral crack will 

be presented in details. Then, some results of LCP-BEM studies of frictional 
contact crack analyses are graphically presented. The used software has been 
extensively tested in a large number of cases for the solution of crack iden­
tification problems in connection with optimization methods, neural network 
techniques, and filter algorithms, as it will be described in the sequel. Its per­
form~nce is very satisfactory, as it has been documented in [Stavroulakis and 
Antes, 1997] and other recent publications which will be mentioned later. 

At the final stage of development, a plate with a classical, bilateral or unilat­
eral crack is discretized and solved, in an automatic way, i.e., for each possible 
position of the crack etc., by using the two-region boundary element technique, 
as it is outlined in Figure 5.7. The technical details of the two-region BEM with 
classical and unilateral interfaces have been outlined in Section 2.1.5.3. 

A plane stress plate with a crack is considered. For the BEM discretization, 
the plate is divided in two parts, A and B, as in Figure 5.8. For each part, 
quadratic, three-node boundary elements are used and the BEM matrices are 
first calculated. Then, the compatibility conditions along the interface, BGHE 
in the figure, are applied. Frictionless unilateral contact conditions for the 
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Figure 5.7. Multi-region BEM for crack analysis. 

part of the interface, where the crack exists, are taken into account. In the 
postprocessing phase, the two parts are solved separately, by imposing the 
interface displacements as prescribed displacements at the corresponding parts 
of the boundaries. 

The whole procedure is automatically performed by the computer. Only the 
outer dimensions of the plate, the position and the length of the crack and the 
discretization parameters (number of elements etc) need to be given. 

The problem of Figure 5.8 is solved with the following discretization: 

• part A 

side AB: 2 elements, 5 nodes, 

side BG: 4 elements, 9 nodes, 

side GH: 12 elements, 25 nodes (the five center nodes belong to the 
crack), 

side HE: 4 elements, 9 nodes, 

side EF: 10 elements 21 nodes and 

side FA: 8 elements, 15 nodes 

• part B 

(symmetric) 

The dimensions areAB=30.0, AC=100, BG=50., AF=lOO. etc. The material 
constants are Shear modulus 100000.0 and Poisson's ratio 0.3 An external 
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Figure 5.B. Configuration of the plate with the unilateral crack. 

vertical pressure / traction with indensity 1.0 is considered at the upper side 
FED. The crack center is at the middle of the plate, i.e., at point (50.0,50.0) and 
the crack has length equal to 12.5. The unilateral conditions are taken at nodes, 
so the distance between the two outer nodes of the crack is 10.0, the rest is the 
distance between the first unilateral node and the first fixed node. Here, the 
term node denotes actually the pair of adjacent boundary nodes at the interface. 

The vertical traction is equal to 1.0 and it is applied at the upper part. The 
crack is open under this loading. Representative interface results are shown in 
Figs. 5.9-5.10. 

In the next phase of the project, the two-region BEM of Fig. 5.11 has been 
used. For a crack of length equal to 10.0 and for various loadings, the previ­
ously outlined LCP-BEM algorithm easily finds a closed crack under vertical 
compressive loading (see Figs. 5.12 (a), (b)), an open crack condition (Figs. 
5.13 (a), 5.14 (a)), a closed crack with yielded frictional crack interface ( Figs. 
5.13 (b), 5.13 (b)) and a partially closed crack (Figs. 5.13 (c), 5.13 (c)). 

From the previous pictures, one can see that, for instance, loading-dependent 
stress indensity factors arise. Moreover, within a crack identification study, one 
should have difficulties to find a closed, due to the unilateral contact effect 
crack. Under this particularly inappropriate test loading the inverse problem 
cannot be solved. Some results in this area are given in [Stavroulakis and Antes, 
1997], [Stavroulakis and Antes, 1999], [Stavroulakis and Antes, 1998] and are 
summarized in the sequel. 
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Figure 5.9. Tractions at interface GH which includes the crack (calculated during the postpro-
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Figure 5.10. Nodal displacements at interface GH (includes the crack). Calculated directly by 
the unilateral/bilateral interface solver (common displacements at fixed couples of nodes, one 
displacement and relative displacement at the unilateral couples. 
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Figure 5.11. Data for the static crack analysis problem. (a) Data, (b) discretization 
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Figure 5.12. Boundary tractions for the static crack analysis problem under several loading 
cases. 
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Figure 5.13. Boundary tractions for the static crack analysis problem under several loading 
cases. 

I-y 
I-x 

Figure 5. J 4. Boundary tractions for the static crack analysis problem under several loading 
cases. 
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5.4 NUMERICAL EXAMPLES OF INVERSE 
PROBLEMS 

5.4.1 FLAW IDENTIFICATION 
A plane strain plate with several holes (flaws) is considered first. For the 

BEM discretization, the boundaries of the plate are discretized by means of 
quadratic boundary elements. The whole procedure is automatically done by 
the computer. Only the outer dimensions of the plate, the position and the length 
of the holes and the discretisation parameters need to be given. 

The material constants are the shear modulus G=lOOOOO.O and the Pois­
son's ratio 0.3. The external dimensions of the plate are 10.00 x lO.OO, all in 
compatible units. 

In all examples presented here, the external boundary is discretized by means 
of 20 boundary elements (i.e., a total of 40 nodes) and each hole is discretized 
by means of 5 boundary elements (i.e., additional lO nodes for each flaw). 
Moreover, the right hand side external boundary (be in Fig. 5.15) is fixed and 
the loading is applied on the left hand side external boundary (ad in Fig. 5.15). 

A representative example of a static solution for uniform external tractions 
equal to 1000.0, in both the horizontal Ox and in the vertical Oy coordinate 
direction, is given in Fig. 5.16. Three circular holes are considered. Their 
centres are at the positions (1.5,1.5), (5.0,7.0) and (7.5,5.0). The diameters 
are equal to (0.5), (2.0) and (1.1), respectively. Note that relatively large holes 
are considered here in order to facilitate the graphical representation of the 
deformed configuration. Nevertheless, in the identification problems solved 
later, considerably smaller flaws are considered. 

After a parametric investigation, the error function ~err(z) of (5.1) and the 
logarithmic error ~err-log(Z) of (5.2) are plotted in Figs 5.17 a,b, respectively. 
The known flaw is a cyclical hole of diameter equal to 0.1, centred at the 
point (5.0,5.0). Comparison flaws have been calculated at all vertices of an 
orthogonal net with centre points at x E (1.0,9.0), y E (1.0,9.0), and steps 
equal to 1.0. 

Let us now consider the identification problem for the position of the centre 
of two cyclical flaws, with centres at (5.0,5.0) and (7.0,5.0) and of diameter 
equal to 0.1. From starting points equal to (2.0,7.0) and (5.0,3.0) and from an 
initial test diameter value equal to 0.3, the Sequential Quadratic Programming 
(SQP) optimization algorithm converges to the correct solution after 38 major 
and 51 minor iterations. The history of all iterative values for the centre of 
the first flaw, the centre of the second flaw, and the two flaw diameters, for 
all function evaluations, is mapped in Figs. 5.18 a,b and c, respectively. The 
history of the error function values e' versus the major (significant) iterations 
of the algorithm is given in Fig. 5.18 d. 
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Identification of one flaw, by starting from the assumption that two flaws 
exist, is demonstrated in Figs. 5.19 a-d. Here, two cyclical flaws of initial 
centre positions equal to (7.0,2.0) and (2.0,4.0) and of diameters equal to 
(0.4) and (0.02) are assumed. Finally, the one actually existing flaw at centre 
(5.0,5.0) with diameter equal to (0.1) is identified. The centre values of the 
second flaw converge to the arbitrary values (1.58,3.90). Nevertheless, its 
diameter converges to a small number equal to 0.015, which has been set to be 
the lower limit allowed for this value in the optimization problem. 

The latter case, where some of the assumed flaws do not exist, is shown in 
the results of two more tests. In both cases, a circular defect with centre at 
(5.0,5.0) and with diameter equal to (0.1) is assumed. 

Table 1: Position and size identification for two flaws. 

TESTl Flawl Flaw 2 

Initial Final Initial Final 

x-coordinate 2.0 4.5 7.0 5.93 
y-coordinate 2.0 2.09 7.0 5.39 
diameter 0.3 0.05 0.3 0.09 

TEST 2 Flaw 1 Flaw 2 

Initial Final Initial Final 

x-coordinate 2.0 4.55 2.0 5.13 
y-coordinate 2.0 2.49 9.0 4.S2 
diameter 0.3 0.05 0.5 0.101S 

TEST 3 Flawl Flaw 2 

Initial Final Initial Final 

x-coordinate 2.0 4.98 2.0 1.618 
y-coordinate 2.0 4.94 9.0 3.91 
diameter 1.0 0.1053 1.0 0.051 

Without presenting more numerical values, we would like to conclude that: 

• Using static loadings, the BEM- numerical optimization approach to the 
static, inverse flaw detection problem works satisfactorily. All presented 
examples require less than five minutes computing time on an IBM RISe/-
6000 Workstation, with no attempt on code optimization. 

• The logarithmic error function (5.2) leads to better convergence results than 
the simple Euclidean error measure (5.1). Regularization was not needed in 
this approach. 
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Figure 5.15. Configuration of a plate with two flaws. 

• If zero dimension flaws (e.g., circles of zero diameter) are expected to occur 
in the inverse problem, two strategies may be adopted: 

1. either, a lower limit ("numerical zero") is posed on the numerical opti­
mization routine and one assumes that variables which have reached this 
limit lead to flaws with negligible influence on the structural response, 

2. or, for values lower than a small limit, the corresponding flaw is assumed 
to disappear, thus, it is not longer included in the BEM model. 

Usually, both tricks work for the majority of the tested cases. The results may 
depend on the initial values, but, they give usually a reasonable estimate of the 
existing defect. Nevertheless, the second strategy, which has been automatically 
incorporated in the computer program, has caused convergence problems in 
some examples. The reason is that the discontinuous change of the mechanical 
model lead to discontinuities in the arising error function at that point. Some 
kind of gradual reduction schemes have to be adopted for this case, which will 
be a subject of further investigations. 



www.manaraa.com

Static problems 127 

o 
o 

Figure 5.16. Undeformed and deformed configuration under static loading for a plate with 
three flaws. 
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Figure 5.17. (a) Plot of the error function and (b) of its logarithmic version for several cyclical 
flaws of diameter equal to 0.1. Comparison with a flaw at point (5.0, 5.0), for static excitation. 
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Figure 5.18. Two-flaw identification using static data. (c) diameter of the two flaws and (d) 
error function plot. 
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One-flaw identification using static data and the two-flaw model. 
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Figure 5.19. One-flaw identification using static data and the two-flaw model (continued). 
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BILATERAL AND UNILATERAL CRACK 
IDENTIFICATION THROUGH ERROR 
OPTIMIZATION 

Classical optimization techniques are applied for the identification of the 
position of a given crack in a two-dimensional elastic plate. Several loading 
conditions are used, where the some of them leave the crack practically open 
(classical mechanical behaviour), while other loadings cause a (partial or total) 
closing of the crack. It is obvious that for one loading case, a closed crack can 
not be identified satisfactorily, as it is demonstrated by the numerical results of 
Fig. 5.20 (see also the Table with the results that follow). The real crack of 
length equal to 10.0 was assumed to have its center at the point Xcrack = 44.0 
and Ycrack = 68.0. All calculations started from the initial point (initial estimate 
for the crack position) Xcrack = 50.0 and Ycrack = 50.0. 

Table 2: Finding the position of a crack through error minimization. 

line fx fy Unilateral Xc rack Ycrack 

0.0 100.0 NO 44.395 68.062 
2 0.0 -100.0 YES 50.000 49.52 

3 -100.0 100.0 YES 43.343 57.756 
4 -100.0 100.0 NO 44.395 68.062 

5 100.0 100.0 YES 50.000 50.000 

6 100.0 100.0 NO 50.000 48.81 

The horizontal and tangential contributions of the loading along the upper 
boundary of the plate are denoted by fx and f y , respectively. One sees that 
an appropriate loading case, i.e., a loading perpendicular to the crack line with 
zero horizontal component solves the inverse problem only if contact problems 
are not taken into account (lines 1 and 2 in the Table). For other types of loading 
the results is case-dependent (lines 3 to 6). For one case shown in lines 3 and 
4 the consideration of the contact conditions lead to less accurate predictions. 
The crack was partially closed in this case. In case of an experiment this would 
also be the case with the experimental measurements. 

For the solution of the inverse problem, the optimization routine E04UCF of 
NAG is used. All test examples have been solved with the same accuracy. 
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Figure 5,20, Finding the position of an open and of a closed crack by numerical optimization 
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CLASSICAL AND UNILATERAL NEURAL 
CRACK IDENTIFICATION 

The neural network unilateral crack identification method is demonstrated 
in the sequel. 

Three layer networks, trained by the back-propagation method, are used 
here. The inputs are the nodal vertical displacements of the upper boundary 
of the plate or a weighted sum of them over all considered loading cases. All 
input variables are normalized within the interval [0.1,0.90], as required for 
better performance of the neural network model. The outputs of the neural 
network are the coordinates of the crack center, again normalized within the 
above given interval. Due to the ill-conditioning of the studied inverse prob­
lem, the generalized space lattice transformation, proposed in [Yoshimura et al., 
1996], can also be incorporated in this step, in order to enhance the numerical 
performance of the learning phase of the neural network. Roughly speaking, 
although the combinations of the design variable values, which have been con­
sidered for the learning examples, are uniformly distributed in the intervals of 
interest, the responses of the, due to the unilateral contact, nonlinear system are 
no more uniformly distributed in the response space (here, the displacements at 
the observation - measurement points). The above mentioned nonlinear trans­
formation alleviates this deficiency. In this first investigation, horizontal cracks 
of given length equal to 10.0 are assumed. 

Under tensile loading, i.e., when no unilateral effects are activated, the neural 
network model has no difficulty to identify properly the position of the crack. 
The learning history and the accuracy of storing a set of data and predicting the 
position of the crack for another set of data (not used in the learning phase of 
the network) are documented in Figs 5.215.23. Observe in Fig. 5.23 that the 
upper row and the right column of cracks are not identified accurately, a fact 
that can be predicted from the neural network theory since these data lie outside 
of the set of data used for training the neural network (see Fig. 5.22). In fact, 
neural networks are not so good in extrapolating from given (learning) data. 

Even a more economical neural network and less number of learning data 
can be used for the construction of a system which may identify the position 
of existing cracks with less accuracy but with considerably less effort. Such 
an application is demonstrated in Figs. 5.24-5.26 and could be of interest as a 
first, rough approximation. 

By using only compressive loading data, one has no success to teach a neural 
network to solve the crack identification problem. Possibly, the small differ­
ences between the displacement measurements for the various crack positions 
which exist in this case, since the crack is closed and only its frictionless tangen­
tial slip deformation introduces a slight perturbation in the stress or in the dis-
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placement fields. A more effective magnification of these differences through, 
e.g., a logarithmic scaling could lead to reasonable results in this case as well. 

Nevertheless, if one uses both tensile and compressive loading cases, a neural 
network based identification system can be constructed. More effort is required, 
as expected, in this case and the accuracy of the predictions is not always good. 
Two approaches which use both tensile and compressive loading cases have 
been tested till now and gave reasonable results. The first one consists in 
using a weighted average over the two loading cases before the neural network 
processing. Displacements are averaged for each d.oJ. and then used for 
learning and prediction purposes. This application is documented in Figs. 
5.27-5.29. In the second approach all input-output data for all (here the two) 
loading cases are presented to the network in the loading (learning) phase. 
This approach lets actually the network perform the averaging over the given 
loading cases but doubles the effort required for the training of the network. 
This application is demonstrated in Figs. 5.30-5.34. Note that for the case 
where two loading cases are used, training is stopped by the maximum number 
of steps limit without reaching the wished means square root accuracy. The 
quality of the results is accordingly reduced. 

Analogous results can be obtained for the identification of the inclination 
of a rectilinear crack (of known length and position, see [Stavroulakis and 
Antes, 1999] for a few results in this direction), or for the identification of the 
length of a crack (of known position), etc. If one tries to find all uncknown 
variables in one step the requirements in computer time grow quickly and the 
results are not satisfactory. In general, it is a well-known strategy in neural 
network applications to decompose the problem in small subproblems and to 
apply different neural networks for each subproblem (cascading strategy, see 
also the application of the next Chapter). 

All here described neural network models have been done by using the Neural 
Network Toolbox of MATLAB, installed on an mM RISC/6000 System at the 
Institute of Applied Mechanics of the TU Braunschweig. 

The direct problem has been solved by a home-made FORTRAN code based 
on the BEM implementation of [Brebbia and Dominguez, 1989], without any 
attempt for space or time optimization. The computational efficiency of the 
proposed method can be estimated from the following data which concern the 
here presented numerical examples. 

On the above given computational environment, each solution of the direct 
problem, i.e., for each position of the crack and each loading case, 2 minutes 
of computer time are required. Recall that by using the scheme outlined in 
Section 2 and for a given boundary element discretization we have considered 
a structure composed of two parts. Each part has a total of 84 boundary nodes, 
from which 29 belong to the common interface of the two parts (17 realize the 
classical, bilevel connection and 12 the unilateral one along the sides of the 
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crack). Thus, the size of the final problem is equal to 324 (cf., relation (2.79) 
coupled with the appropriate interface conditions). Furthermore, no attempt 
has been made to exploit the block structure of the involved matrix. 

On the other hand, the neural network simulation has been performed serially, 
on-line, within the MATLAB environment, which, in tum, is installed in a 
campus-wide computer network. A total of 29 displacement values are used as 
input for each learning example. For the results of Figs. 5.21-5.23 and of Figs. 
5.27-5.29, a total of 49 examples have been used for the training phase and 42 
different ones for the verification phase. For the results of Figs. 5.24-5.26, 16 
learning examples and 42 verification examples have been used. Finally, for the 
results of Figs. 5.30-5.34, 98 learning and 84 verification examples are used, 
since both loading cases have been treated separately there. On average 10000 
learning epochs took about 1,5 hours of computing time. Reproduction times, 
after learning, are at the level of several seconds of computing time. 

Note here that all above efficiency measures are indicative since they strongly 
depend on the computing environment and, especially for the neural network 
part, they can be drastically reduced if a batch-type excecution or a standalone 
neural network problem is used. 

A last comment concerns the application of adaptive network based fuzzy 
inference system, i.e., a fuzzy inference system where the fuzzy rules which 
reproduce the inverse structural function are adaptively constructed by means 
of neural network training. This technique, known as ANFIS (see, e.g., [Jang, 
1993]), is available in MATLAB. The results of learning an inverse structural 
relation and, subsequently, of approximating the inverse crack identification 
problem, are analogous to the one presented for the classical back-propagation 
method. The hope that by reducing the number of rules some comprehensive 
rules whould arise was not successful. The reason is that an automatically gen­
erated fuzzy inference system with a reasonable accuracy had a large number 
of rules, which can not be interpreted easily. Nevertheless, the idea of automat­
ically extracting the significant relations in the inverse structural relation, i.e., 
of generating the experience of a human operator from data is interesting and 
may lead to better results in other cases of inverse problems. 
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Figure 5.21. Tensile loading case. Use of all vertical nodal displacements of the upper bound­
ary. Network configuration 29-50-50-50-2 with logarithmic transfer functions. Documentation 
of learning history 
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Figure 5.22. Tensile loading case. Use of all vertical nodal displacements of the upper bound-
ary. Network configuration 29-50-50-50-2 with logarithmic transfer functions. Accuracy of 
learning the crack center position 
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Figure 5.23. Tensile loading case. Use of all vertical nodal displacements of the upper bound­
ary. Network configuration 29-50-50-50-2 with logarithmic transfer functions. Accuracy of 
predicting the crack center position 
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Figure 5.24. Tensile loading case. Use of all vertical nodal displacements of the upper bound­
ary. Network configuration 29-30-30-30-2 with logarithmic transfer functions. Documentation 
of learning history using 4 x 4 net of potential cracks (learning cases) 
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Figure 5.25. Tensile loading case. Use of all vertical nodal displacements of the upper bound­
ary. Network configuration 29-30-30-30-2 with logarithmic transfer functions. Accuracy of 
learning the crack center position for a 4 x 4 net of potential cracks (learning cases) 
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Figure 5.26. Tensile loading case. Use of all vertical nodal displacements of the upper bound­
ary. Network configuration 29-30-30-30-2 with logarithmic transfer functions. Accuracy of 
predicting the crack center position (after learning by a reduced, 4x4 net of learning examples) 
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Figure 5.27. Tensile and compressive loading cases. Use of all vertical nodal displacements of 
the upper boundary (summ over the loading cases). Network configuration 29-50-50-50-2 with 
logarithmic transfer functions. Documentation of learning history 
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Figure 5,28, Tensile and compressive loading cases, Use of all vertical nodal displacements of 
the upper boundary (summ over the loading cases), Network configuration 29-50-50-50-2 with 
logarithmic transfer functions, Accuracy of learning the crack center position 
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Figure 5.29. Tensile and compressive loading cases. Use of all vertical nodal displacements of 
the upper boundary (summ over the loading cases). Network configuration 29-50-50-50-2 with 
logarithmic transfer functions. Accuracy of predicting the crack center position 
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Figure 5.30. Tensile and compressive loading cases. Use of all vertical nodal displacements 
of the upper boundary (summ over the loading cases for each learnign epoch). Network config­
uration 29-50-50-50-2 with logarithmic transfer functions. Documentation of learning history. 
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Figure 5.31. Tensile and compressive loading cases. Use of all vertical nodal displacements of 
the upper boundary (summ over the loading cases for each learnign epoch). Network configu­
ration 29-50-50-50-2 with logarithmic transfer functions. Accuracy of learning the crack center 
position using tensile loading data. 
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Figure 5.32. Tensile and compressive loading cases. Use of all vertical nodal displacements of 
the upper boundary (summ over the loading cases for each learnign epoch). Network configu­
ration 29-50-50-50-2 with logarithmic transfer functions. Accuracy of learning the crack center 
position using compressive loading data. 
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Figure 5.33. Tensile and compressive loading cases. Use of all vertical nodal displacements 
of the upper boundary (summ over the loading cases for each leamign epoch). Network con­
figuration 29-50-50-50-2 with logarithmic transfer functions. Accuracy of predicting the crack 
center position using tensile loading data 
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Figure 5.34. Tensile and compressive loading cases. Use of all vertical nodal displacements 
of the upper boundary (summ over the loading cases for each leamign epoch). Network con­
figuration 29-50-50-50-2 with logarithmic transfer functions. Accuracy of predicting the crack 
center position using compressive loading data. 
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5.4.4 FILTER-DRIVEN ITERATIVE CRACK 
IDENTIFICATION 

The inverse problem consists in finding the position of a rectilinear crack 
contained in the plate used previously. Both loading and measurement points 
are considered to lie on the upper part of the plate. A horizontal crack of length 
10.0 with center at the position with horizontal, x-coordinate 44.0 and vertical, 
y-coordinate 68.00 is assumed. The filter-driven iterative algorithm outlined in 
Section 4.5. is used. For all results a unit matrix Q = I is used. Convergence 
is assumed if the difference between two successive values of z is less than 
I.e - 3. In the sequel the crack will be moved in the plate so that its center 
will take positions between horizontal x-coordinate 30.0 and 70.0 and vertical 
y-coordinate 30.0 and 70.0. For each test position of the crack, the complete 
mechanical problem is solved automatically by the computer. 

Let us consider that all displacements at the upper boundary of the plate, i.e., 
60 values from the 30 boundary nodes of the upper boundary can be measured. 
Convergence of the algorithm depends on the used test loading, which also 
determines the state of the unilateral crack (i.e., open, partially closed etc). 
Four loading cases have been considered: 

A vertical loading component equal to + 100 (i.e., upwards or tensile loading 
fot the plate) 

B vertical loading component equal to -100 (i.e., downwards or compressive 
loading for the plate) 

C horizontal loading component equal to + 100 (i.e., from the left to the right) 
and vertical loading component equal to + 100 

D horizontal loading component equal to -100 and vertical loading component 
equal to + 100 

Loading cases Band C lead to partially or fully closed cracks for the most 
considered positions of the crack. 

For the crack one may assumes: 

c classical crack (closes without contact) or 

u unilateral crack (closes as in reality and transmitts tractions) but without 
friction (small slips between the crack faces are allowed for). 

The results of our numerical experiments are summarized as follows: 
For every starting point with crack center coordinates between 30.0 and 70.0 

the algorithm was able to find the correct position of the crack, provided that a 
consistent set of measurements and model is used. This means, for example, that 
one provides measurements for a partially closed crack, and uses the unilateral 
crack model for the inverse problem. 
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Figure 5.35. Convergence of the crack identification from four different starting points 

The computational cost is different and depends on the applied test loading. 
For loading cases A and B, the algorithm converged in 4-7 iterations. For loading 
cases C and D, the job was relativelly complicated. A maximum step length 
(change in z) of 10 per cent of the value has been set to avoid nonconvergence. 
The correct solution was found after 3 to 14 iterations. As it is expected, less 
iterations are needed if a good initial estimate of the unknown values (starting 
point of the algorithm) is available. Five iterations with our 'home-made' 
FORTRAN programms take about 7 minutes of computing time on an mM 
RISe 6000 workstation. Sample results from the iterations of the algorithm are 
shown in Figs. 5.35 and 5.36. 

Addition of a reasonable random error in the measurements, up to 5 per cent, 
or consideration of less measurement points did not change the picture. 

A more interesting result arises if one considers real-life measurements, i.e., 
measurements taken from the unilateral crack model u and tries to identify the 
crack by using a classical crack model c. In this case, the same previously tested 
algorithm systematically converged to inaccurate predictions. Thus, for loading 
case B, the algorithm predicts a crack with a center at point (53.30,67.10), 
instead of the right one which lies at (44.0,68.0). For loading case D, the 
algorithm converged to the point (44.50,68.18), respectivelly. It should be 
noted that the previous values do not change essentially for all considered 
starting points. 
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Figure 5.36. Convergence of the crack identification. Coordinates of the center of the crack 
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Chapter 6 

STEADY-STATE DYNAMICS 

6.1 INTRODUCTION AND LITERATURE SURVEY 

Dynamic identification problems have both been studied by means of clas­
sical, optimization based techniques and by means of more contemporary, soft 
computing tools. Eigenvalue and eigenvector data have been used for the cor­
relation of a given design or defect configuration with a measured modal signa­
ture, see, among others, the papers [Yoshimura et al., 1993], [Yoshimura et aI., 
1996]. In fact, crack detection has traditionally been studied by considering 
the changes of the system's eigenvectors and eigenvalues due to the appear­
ance of the crack, see, among others, [Dymarogonas and Papadopoulos, 1983], 
[Mao and Shen, 1991], [Armon et al., 1994], [Dado, 1997]. Beyond the clas­
sical, general purpose model updating techniques (see, e.g., [Natke, 1991]), 
more specialized algorithms have been proposed for the crack identification 
problem. Among them, let us mention the multi-hypothesis reliability based 
crack diagnosis algorithms of [Ben-Haim, 1996], p. 127, the reciprocity gap 
approach of [Andrieux and Abda, 1993] and the cluster analysis technique of 
[Meltzer and Eckhold, 1995]. In particular, neural network identification tech­
niques with modal data have been proposed and tested in [Hajela and Soeiro, 
1990], [Elkordy et aI., 1992], [Tsou and Shen, 1994], [Rhim and Lee, 1995], 
[Yoshimura et al., 1996]. 

Among others, elastodynamic identification problems are considered in 
[Tanaka et aI., 1991] and [Oishi et aI., 1995]. In [Tanaka et aI., 1991], the 
elastodynamic inverse analysis problem for time-harmonic excitations is solved 
by the boundary element method. The square sum of residuals between the 
measured data and the dynamic responses is minimized in the identification 
phase and, by this way, the internal crack is identified. The effect of including 
noisy information in this procedure is mainly reported in [Tanaka et aI., 1991] 

157 
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while the method is described in previous publications of the same authors. 
In [Oishi et al., 1995], an ultrasonic, nondestructive evaluation technique is 
simulated by elastodynamic boundary element calculations. The length or both 
the length and the position of a given vertical crack in a rectangular plate is 
identified. The dynamic response history or characteristic values extracted 
from it (in particular, the first peak time and height) are used. The identification 
problem is solved by appropriate neural-network-based techniques. 

Especially, the evaluation of ultrasonic data has been perfonned in several 
cases by means of neural network models, see, among others, [Brown and De­
Nale, 1991], [Song and Schmerr(Jr.), 1991], [Kitahara et al., 1991], [Thomsen 
and Lund, 1991], [Kitahara et aI., 1992], [Takadoya et al., 1993], [Yagawa 
et aI., 1993], [Yoshimura et al., 1993], [Oishi et al., 1995], [Takuma et aI., 
1996]. Usually some kind of preprocessing is involved in order to reduce the 
size of the data which are used in the neural network model. For instance, 
in [Yoshimura et al., 1993], after solving the wave propagation problem in a 
medium with a defect, characteristic values of the response signal, which are 
influenced from the existence and the data of the defect, are extracted. In that 
case, these values are the first peak in the measured wavefonn, its height and 
the arrival time. A detailed investigation of the application of back-propagation 
neural networks in this area with both binary and analogue response units can be 
found in [Takadoya et aI., 1993]. For a recent review of neural network applica­
tions in computational mechanics with some applications on inverse problems, 
see [Yagawa and Okuda, 1996]. 

It should be noted that eigenvalue and eigenvector identification techniques 
use global elastodynamic quantities of the structure which may be less sen­
sitive with respect to small defects of damages (e.g., cracks). Furthennore, 
the harmonic elastodynamic problem has certain fonnal similarities with the 
static problem but the underlying operator is considerably more complicated. 
As a consequence, the corresponding inverse problems may be nonconvex and 
their numerical solution requires the use of global optimization algorithms (see, 
among others, [Banks and Emeric, 1998], [Oeljeklaus and Natke, 1996]). It 
is clear that classical modal analysis and harmonic elastodynamic fonnulation 
assume a linearly elastic mechanical behaviour. Thus, contact effects can not 
be taken into account without further assumptions. 

In this Chapter, the magnitude of a steady state, periodic excitation is used 
for the fonnulation and the solution of the inverse problem. There are several 
reasons for doing so. First, in order to reduce the amount of data involved 
without loosing the advantages of having a dynamical signal, a time-periodic 
dynamical problem is used. Thus, the only remaining possibility would be to 
use the modal data of the specimen. But, eigenvalues and eigenvectors are 
not always significantly influenced by small changes of the geometrical and 
stiffness data of a structure. This may leed to accuracy problems for crack 
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identification tasks. Moreover, for large changes of the crack quantities, a 
change of order in the systems eigenmodal quantities may arise, i.e., the first 
mode may become the second for a certain change of the position of the crack. 
This would require additional effort to trace these changes. Finally, for small­
scale specimens it is not always efficient to perform an accurate modal analysis 
test due to the fact that, in this case, the mass and stiffness of the required 
apparati (shakers, sensors) are of the same order with the ones of the structure 
itself and, thus, influence the measured quantities. In view of all these facts, 
the choice of the boundary element method, in the form outlined in the next 
section, has been natural. This would not be the case, had we preferred to use 
modal quantities (they are extracted more easily by finite element techniques). 
Harmonic elastodynamic response for structural identification has been used, 
among others, in [Tanaka et al., 1993] and [Chen and Liu, 1996] in connection 
with iterative techniques based on optimization algorithms and computational 
mechanics modelling. In a more general context, one may use both real and 
imaginary parts of the input and output of the mechanical system for the treat­
ment of the inverse problem, for example using the complex back-propagation 
neural network technique outlined in [Haykin and Ukrainec, 1993]. 

6.2 OUTPUT ERROR FORMULATION OF THE 
INVERSE PROBLEM 

An output error minimization problem is formulated and solved. Let a struc­
ture with unknown cracks or flaws be subjected to a number of extemalloadings 
bl , 1 = 1, ... ,h, with corresponding frequencies wm , m = 1, ... ,mI. Let the 
measured responses of the structure be denoted by Xo (wm , b l ), for the loading 
wm , b l . Let, moreover, a model of the same structure be constructed which 
contains a number of test flaws parametrized by z. The corresponding response 
of the structure, which is subjected to the same loading wm , b l , is denoted by 
x(z,wm , bl). 

The inverse problem is formulated as a minimization problem for a scalar 
performance error function: 

II ml 

e(z) = L L (1Ix(z,wm , b l ) - xo(wm , bl)II) (6.1) 
l=1 m=1 

Here II . II is an appropriate norm. Usually, the L2 norm is adopted (least 
square identification). Here, summation over all available loading cases and all 
excitation frequencies forms a compromising gain function. Other choices can 
also be considered. 

Due to the nonlinear nature ofthe parametrized mapping z -+ x(·, w, b), the 
composite function e(x(z) is, in general, non-convex. As it is also shown in the 
numerical experiments, the nonconvexity effect is more severe in elastodynamic 
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problems, in comparison with the static analysis results. This is shown if one 
compares the results for flaw identification presented in the previous Chapter 
(the static case) and later in this Chapter (the harmonic dynamic case). 

In the numerical experiments, the use of the following logarithmic transfor­
mation has been proved beneficially: 

e' ( z) = log ( e ( z) + €), (6.2) 

where € is a small positive constant, which prevents the appearance of a -00 

value in e' (€ = 0.1 * 10-5 is used here). 
Moreover, a restricted number of measurements (i.e., number of elements of 

x) can be used in the previous problems. In general, the performance of the 
identification problem depends on the choice of the response values which are 
used (number and position of measuring points) and on the considered loading 
case(s)(cf., for static problems, [Banan et al., 1994]). 

Obviously, the solution of a minimization problem with the error function 
(6.1) leads to an estimate of the existing flaws. The quality of this estimate 
depends on the assumed parametrization of the flaws and the numerical accuracy 
of the mechanical modeling. The latter point is facilitated here by the use of the 
boundary element method. In an ideal situation, the value of the error function 
e(z) should be equal to zero for a correct solution ofthe identification problem, 
i.e., the minimum of the goal function in the previously described optimization 
problem should be equal to zero. 

6.3 NEURAL NETWORK SOLUTION OF THE 
INVERSE PROBLEM 

In general, steady state elastodynamic identification leads to nonconvex op­
timization problems. This will be demonstrated by some results concerning a 
plate with a flaw. Following the methods described previously, one may use 
every local or, preferably, global optimization algorithm, a genetic algorithm 
or a neural network method. The neural network approach is briefly described 
here. In terms of computer time, it is beneficial, since all calculations of the 
mechanical problem can be performed, first, off-line by using every available 
program. The treatment of the inverse problem can be done, at a second phase, 
using the already available results for training the network. 

Let a given structure be considered which contains an unknown crack. The 
crack is characterized by a set of parameters Z = [Zl, ... , zmV. Here the coor­
dinates of the crack center and the length of the crack are used as identification 
parameters. Let, moreover, the response of the structural system for a given 
loading b l , I = 1, ... , it and a given frequency wm , m = 1, ... , ml and for a 
given crack z be given by the vector x(wm , z, bl ) as solution of the equation 
structural analysis problem for a given, frequency-dependent loading bl (wm ). 

Here, h is the total number of different loading cases and ml is the total number 
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of frequencies used. Obviously the response of the structure is parametrized by 
the unknown crack parameters z. Let, moreover, the response of the examined 
structure with a known crack subjected to the same loading bl and for the same 
frequency wm be denoted by xo(wm , z, bl). Note that, while in this investiga­
tion the elements of Xo (wm , z, bl ) are produced by computational mechanics 
techniques, the same procedure for the solution of the inverse analysis problem 
can be used if these data are obtained from experiments. 

Instead of formulating and solving the inverse problem as, e.g, an output 
least square error minimization problem (cf., minimization of the error function 
(6.4), see below), a direct treatment of the inverse relation by means of back-­
propagation neural networks is chosen. Recall that, in view of the nonlinearity 
in the response vector as a function of the crack parameters, the classical error 
minimization approach leads to nonconvex optimization problems (see relevant 
discussion in the next section and in [Stavroulakis and Antes, 1997]). 

Here, a multi-layer back-propagation error driven neural network is used to 
learn the relation 

(6.3) 

for a given value of loading vector bl and for a set of excitations wm . The 
couples of data composed of the vectors x( wm , z, bl ) and the corresponding 
parameter vectors z are used as training examples. In the production mode, 
the nonlinear network reproduces the relation x -+ z, i.e., for a given set of 
measurements x (different from the ones used in training) it gives a prediction 
for the variables characterising the internal crack. 

6.4 NUMERICAL EXAMPLES 
6.4.1 FLAW IDENTIFICATION 

Let us assume the same plate considered in Fig. 6.1, but this time subjected 
to a harmonic dynamic loading. For frequency values equal to w = 5.0, 10.0, 
15.0 and 20.0, the corresponding vibration modes, magnified by a factor of 
10.0, are shown in Fig. 6.2. 

A parametric investigation is first performed, similarly to the static case. A 
cyclical flaw of diameter 0.50 is placed at several positions in the plate. The 
response is compared with the one of a same flaw at the place (4.0,4.0). The 
error function (6.1) and the logarithmic version (6.2) are plotted in Fig. 6.3 a 
and b. All four previously given frequencies are considered. 

The appearance of nonconvex error functions, which possibly have local 
minima, seems to be inherent in elastodynamic flaw identification problems. It 
depends on the excitation frequency, the loading, and the measurement points. 
The combined use of the measurements of several excitation frequencies, as 
it has been suggested in (6.1), and the use of the logarithmic scaling of (6.2) 
make the problem more tractable. Nevertheless, this scaling does not work 
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satisfactorily in all cases. Moreover, technological restrictions posed by the 
existent experimental devices should be taken into account. 

A small subset of the parametric investigation results are presented here, in 
order to demonstrate the method. Using only one excitation frequency at a time, 
with loading as previously in both Ox and Oy directions at the left hand side 
of the plate, leads to the results plotted in Figs. 6.4 a-d. The effect of using 
different excitation loadings (e.g., only in the horizontal - Ox - or in the vertical 
- Oy - direction) and of using measurements of the boundary displacements in 
only one direction is shown in Figs. 6.5 a-d. These effects are also present in 
the multiple flaw detection problem, where, due to the higher dimension of the 
problem, an analogous graphical representation is difficult. 

In view of all these difficulties, a global optimization algorithm is the only 
robust method for the numerical solution of the problem. The local optimization 
algorithm, used for the static case, can also applied. Nevertheless, as it should 
have been expected, the results depend strongly on the starting iteration point. 
Moreover, termination at a local minimum of the nonconvex error function, 
which is not the sought solution of the inverse problem, is not rare. 

A FORTRAN genetic algorithm optimization program (see [Carroll, 1996]) 
has been used here. The more effective choice of the parameters for the consid­
ered elastodynamic identification problem with the fitness function of (4.10), 
combined with the logarithmic error measure of (6.2) has been: 

Table 1: Effective values for the genetic algorithm. 

Variable Effective Values 

population size 5 
crossover probability 0.5 
creep mutation probability 0.04 
jump mutation probability 0.20 

A typical plot of the initial population (i.e., the starting guesses of the center 
point of the flaw) and the final population (i.e., the solution of the problem) is 
shown in Fig. 6.6. The history of the maximum and of the mean value of the 
fitness function among all members of a population for all generations (i.e., the 
iterations of the algorithm) is shown in Fig. 6.6 a. It should be mentioned that 
the relatively large deviation shown in Fig. 6.6 b between the maximum and 
the mean value of the fitness function within the members of one generation 
does not correspond to a large inaccuracy of the results, due to the logarithmic 
nature of the fitness function. 

Simultaneous position and size identification can also be done. A sample set 
of results (after 200 generations) is given in the following table: 



www.manaraa.com

Steady-state dynamics 163 

Table 2: Position and size, genetic flaw identification. 

TEST 1 Real Calculated 
Best Element Average 

x-coordinate 4.0 3.9606 5.59 
y-coordinate 4.0 4.0236 4.74 
diameter 0.5 0.4968 0.52 
error e' 13.914 8.16 

The choice of the parameters of the genetic algorithm influences the results. 
Unfortunatelly, no clear picture can be drawn from the numerical experiments 
concerning the best choice of the parameters involved in the genetic optimiza­
tion algorithm, a fact that is well known in the specialized literature (see, for 
instance, [Mitchell, 1996], p. 175). The variables used here led to satisfactory 
results for the considered application. For example, the influence of the size of 
the population is shown in the next results (they concern the identification of 
the coordinates of the center of one cyclical flaw of diameter equal to 0.5, and 
they are obtained after 200 generations): 

Table 3: Effect of the population size on the genetic identification results. 

TEST 2 Population Size = 5 
Best Element Average 

x-coordinate 4.02 4.02 
y-coordinate 3.96 3.89 
error e' 13.88 12.50 

TEST 6 Population Size = 10 
Best Element Average 

x-coordinate 4.02 4.11 
y-coordinate 4.02 3.68 
error e' 14.97 11.42 

TEST 7 Population Size = 15 
Best Element Average 

x-coordinate 3.96 3.93 

y-coordinate 3.96 3.87 

error e' 13.93 11.06 

It is observed that reasonable results can be calculated in this application 
with small population sizes. 

One typical run of 200 generations, which are multiplied by a population 
equal to 5 and result in an equivalent of 1000 solutions of the structural prob­
lem, requires about one hour time on a SGI PowerChallenge 12-processor 
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Figure 6.1. Configuration of a plate with two flaws. 
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Figure 6.2. Undeformed and deformed configuration (magnified by a factor of 10.0) under 
harmonic dynamic loading for a plate with three flaws. Excitation frequencies equal to 5.0 and 
10.0. 

computer system. Nevertheless, parallelization is not explicitly used by our 
preliminary computer code. Implicitly, the FORTRAN compiler of the paral­
lel computer automatically optimizes the performance of the algorithm, within 
certain limits. 
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Figure 6.3. (a) Plot of the error function and (b) of its logarithmic version for several cyclical 
flaws of diameter equal to 0.5. Comparison with a flaw at (4.0, 4.0) for dynamic excitation. 
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Figure 6.4. Plot of the error function (cf., Fig. 6.3 a). Effect of using only one excitation. 
Excitation frequencies: (a) 5.0, (b) 10.0, (c) 15.0 and (d) 20.0. 
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Figure 6.4. Plot of the error function (cf., Fig. 6.3 a). Effect of using only one excitation. 
Excitation frequencies: (c) 15.0 and (d) 20.0. 
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Figure 6.5. Plot of the error function (cf., Fig. 6.3 a). Effect of using different excitationl 
measurement data. Single excitation frequency 10.0. (a) Ox loading and Ox measurement, (b) 
Ox loading and Oy measurement, (c) Oy loading and Ox measurement, and (d) Oy loading and 
Oy measurement. 
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Figure 6.6. One-flaw e1astodynamic identification problem by genetic optimization. (a) Initial 
and final flaw population (center of flaw) and (b) history of the maximum and minimum fitness 
values through the generations. 
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Figure 6. 7. Configuration of the plate with a crack. 

CRACK IDENTIFICATION 
DIRECT PROBLEM 

A plane stress plate with a crack at its lower boundary is considered, as it 
is shown in Fig. 6.7. The material constants are: elasticity modulus E = 
100000.0 + i10000.0, mass density p = 100.0 and Poisson's ratio 1/ = 0.43. 
An artificial damping ( = 0.10 is used throughout. All quantities used here 
are in compatible units. Thus, the wave velocities are equal to Cl = 59.2345 + 
i2.954359, C2 = 31.66218 + i1.579171. The external dimensions of the plate 
are 10.00 x 10.00. We assume a uniform vertical loading on the upper boundary 
of the plate with amplitude equal to Py = 1000.0 and varying frequency w, as 
given later. 

For the BEM discretization, the external boundary of the plate (abcd in Fig. 
6.7) is discretized by means of 67 quadratic boundary elements, i.e., a total of 
134 nodes are used. For further reference, the nodal numbering is as follows: 
node 1 at corner a, node 51 at comer b, node 69 at comer c and node 117 at 
corner d. The boundary element discretization is uniform at all boundaries of 
the plate. Moreover, by varying the position of the assumed crack at the lower 
boundary ab, a uniform continuous change of the nodes is assumed so that the 
effect of the influence of the discretization on the response of the structure is 
reduced. Finally, only the response of the structure at selected nodes of the 
upper boundary cd is used here for identification purposes. 

The influence of the existence of a crack on the response of the system is 
shown on Figs. 6.8-6.11 for various crack configurations and for excitation 
frequencies equal to 5, 10, 15,20,25,30,25 and 40. The crack variables z = 
[xc, le] (cf. Fig. 6.7) are as follows: z = [5.20,1.40] for Fig. 6.8 and 6.11, 
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Figure 6.8. Structural response for a vertical loading, a crack of length equal to lAO and center 
at (5.10,0.0) and various excitation frequencies. 

z = [4.20,1.60] for Fig. 6.9 and no crack for Fig. 6.10. Moreover, vertical 
loading is assumed for Figs. 6.8-6.10 and horizontal loading at the upper 
boundary cd of the plate for Fig. 6.11. A uniform scaling factor equal to 50.0 
is used for plotting the deformed shape in the previous Figures. 

Roughly speaking, the difference between the deformed shapes, measured 
at appropriate measurement points, will be used for identification of the crack 
parameters. To this end, note here that not all excitation loadings and frequen­
cies are able to activate a given crack. For instance, a vertical loading with a 
frequency equal to 20 does not 'see' the crack in Figs. 6.8, 6.9 (last case in 
the upper row). A horizontal loading does not work effectively either (cf. Fig. 
6.11). These facts show the importance of using several appropriately chosen 
excitation frequencies and loadings so that the influence of the crack parameters 
on the measurements is sufficiently strong (see also [Chen and Liu, 1996]). 

One more point is worth mentioning. If an excitation frequency lies near an 
eigenfrequency of the analysed structure, then resonance reactions occur and 
the arising results are, for our purpose, useless. Such a case is obvious in the 
third plot of the upper row in Fig. 6.11. Results of this kind must be excluded 
from further consideration in the study of the inverse problem. 

Here, this resonance phenomenon will be used for an overall check of the 
quality of the BEM model. In fact, by observing the peak(s) of the structural 
response at a given point for various excitation frequencies, the eigenfrequency 
of the system can be specified. This is shown in Fig. 6.13 where the vertical 
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Figure 6. 9. Structural response for a vertical loading, a crack of length equal to 1.60 and center 
at (4.20,0.0) and various excitation frequencies. 
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Figure 6.10. Structural response for a vertical loading, no crack and various excitation frequen­
cies. 

displacement of node 100 (at the coordinates x = 3.0, Y = 10.0, see Fig. 
6.7) is plotted for a plate with a crack (lc = 1.60, Xc = 3.80) and the same 
plate without crack. The extracted eigenfrequencies, equal to 8.30 and 8.51 
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Figure 6.11. Structural response for a horizontal loading, a crack of length equal to 1.40 and 
center at (5.10,0.0) and various excitation frequencies. 

respectively, agree well with the results of a separate finite element calculation. 
The first four computed eigenmodes for the plate without the crack are given 
in Fig. 6.14. For instance, the fourth eigenfrequency is estimated from the 
plot to be equal to 8.51 while a FEM calculation by using 25 quadrilateral finite 
elements and the program PCFEAP(see, [Zienkiewicz and Taylor, 1991]) leads 
to a value equal to 8.537. 

6.4.2.2 INVERSE PROBLEM 
An investigation of the inverse problem for the plate of Fig. 6.7 is performed 

here. The range of cracks with a length lying in the range of lc = [0.40 - 1.8] 
and a crack center lying in the range of Xc = [1.5 - 4.0] is investigated. 

First, let us consider a least-square type measure of the measurements' dif­
ference. By considering all vertical displacements of the upper boundary cd 
in the Fig. 6.7 (elements i of the subvector u of x, denoted as xt here, at the 
nodes i 69 - 117), for several frequencies m ( w E {15, 20, 25, 30, 25, 40} ) 
this measure reads: 

""" """ { . I' I } 2 <I>(z) = <I> (lc, Xc) = log ~ ~ X~(wm, z, b ) - x~(wm, z, b ) . 
i=69,117 m=1,6 

(6.4) 
The case of <I> = -00 has been set equal to -20 for the plots. Moreover, 
before using the displacement values of the boundary nodes, they have been 
normalized, for each loading case separately, between values 0.0 - 1.0. The 
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Figure 6.12. Eigenfrequency shift for a plate with a crack . 

• 0 

Figure 6.13. First four eigenmodes. Results of PCFEAP with quadrilateral finite elements. 

previous measure for several positions of the crack calculated by means of all 
six previously given excitation frequencies or only the last value of them is 
plotted in Figs. 6.14,6.15. 
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Figure 6.14. Plot of measurement error function, use of six excitation frequencies. 
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Figure 6.15. Plot of measurement error function, use of one excitation frequency. 
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From the results of Figs. 6.14, 6.15 and from similar parametric investiga­
tions, which can not be given here due to lack of space, one may observe some 
interesting features of an error function like (6.4). First of all, the considered 
signal has all needed information for identifying both the position and the mag­
nitude of a given crack. Clearly, a global minimum of cp(z) always appears at 
the positions of the assumed crack. The ill-posedness of the problem, i.e., the 
fact that the effect of the crack variables on the result has a different magnitude 
for different values of these variables, is obvious from the need of using a loga­
rithmic scaling in (6.4) (otherwise the plots would have been less informative). 
Moreover, the nonlinearity of the mapping between the crack variables and the 
structural response makes the (otherwise convex) quadratic error function non­
convex. Some evidence of this latter fact is shown in Figs 6.14, 6.15, where 
local minima arise. 

An analogous investigation by using the position of a crack of given length 
and static analysis data has been performed in [Stavroulakis and Antes, 1997]. 
Note that the case here is much more complicated, since the size of the measured 
data is larger (roughly speaking, the size of the static problem multiplied by 
the number of excitation frequencies). Moreover, variables of different nature 
(position and length of the crack) are involved in the investigation of this paper. 

Unfortunately, from our limited numerical experience, we could not extract 
rules of general validity concerning the number and magnitude of appropri­
ate excitation signals so that to optimize the performance of the identification 
scheme. Moreover, the solution of the complete identification problem (both 
position and magnitude of a crack) as posed previously can not be performed 
effectively by using a unified neural network strategy (analogous to the one 
used in [Stavroulakis and Antes, 1997] for a static crack identification prob­
lem). The first attempts either reach the upper bound of allowable computing 
time, or, lead to problems of 'over-learning'. The last phenomenon is relatively 
well known in the neural network literature: due to insufficient choice of the 
size of the network (or of the scaling in the used parameters) the network is able 
to learn the given examples (data) with sufficient accuracy but the accuracy of 
the prediction from unknown data is not good. This effect is also referred to as 
the saturation of learning or as an overfitting condition. 

For this reason, a multiple network (cascading) splitting strategy is adopted 
here (see also relevant discussions and applications in [Abdalla and Stavroulakis, 
1995], [Zell, 1994], [Stavroulakis and Antes, 1999]). This way, the complexity 
of the problem is simplified, the arising subproblems can be solved quickly, 
and the solution of the whole problem arises as a combination of several steps. 
The essence of this splitting is to solve a problem first for finding the size of 
the crack, then the length, etc, i.e., all elements of the crack variables' vector 
by using separate neural network systems. 



www.manaraa.com

176 INVERSE AND CRACK IDENTIFICATION 

As previously the range of cracks lc = [0.40 - 1.8] and Xc = [1.5 - 4.0] is 
investigated. These quantities are in the sequel scaled in the range [0.0 - 1.0]. 
U sing all vertical displacement data of the upper boundary, for two frequency 
excitations (w = 5.0 and 25.0), the length of an unknown crack (with given 
crack venter position) can be identified by means of a neural network system. 
For Xc = 1.40 and Xc = 2.0, the learning history and the results are presented in 
Figs. 6.19-6.21 and 6.22-6.24. For a given crack length lc = 0.4, the learning 
and prediction of the crack position Xc is done by an analogous procedure. 
For more details, see the results in the previous Chapter and [Stavroulakis and 
Antes, 1998]. A feed-forward neural network, trained by the backpropagation 
learning algorithm is used. The network has 96 input nodes (i.e., all 48 nodal 
displacements for two frequency cases), two internal layers with equal number 
of nodes and one output node, which measures the unknown length of the 
crack. The neural configurations 96 - X - X-I have been tested, with 
X = 150 for Figs. 6.19, 6.22, X = 50 for Figs. 6.20, 6.23, and X = 10 
for Figs. 6.21, 6.24. In all these results, three sets of data have been used for 
learning and three, different sets of data are used for testing the efficiency of 
the prediction. Thus, in the graphical representation of the predictions in Figs. 
6.16 ... , the vertical difference between the predicted value, plotted by a +, 
and the diagonal line shows the accuracy of the obtained prediction. Thus, the 
first, third, fifth and seventh point (from the left hand side) denoted by a * in 
Figures, has been used for learning. The remaining points are used for testing. 
The learning procedure has been performed by a momentum backpropagation 
algorithm with logarithmic activation functions, a momentum constant equal to 
0.95 and a stopping sum-squared error equal to 0.0001. 

As expected, neural prediction near the boundaries of the given data, or 
extrapolation from known data, is in general of less accuracy. Nevertheless, 
for this application, and considering that learning has been based on only three 
sets of data (i.e., the solution of the problem for only three different crack 
configurations, for each case, is needed) the obtained accuracy is acceptable. 
Moreover, use of only a limited number of measurements seems to lead also to 
acceptable results. These findings are summarized in the next two Tables. 

The number of required epochs (steps) in the learning procedure and the 
achieved accuracy as a percent of the known values is given in the following 
Table, where the net configuration is given by the variable X, as previously, 
and the three columns correspond to Figs. 6.19-6.24, respectively. 
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Figure 6.17. Neural prediction of the crack length, for given crack center position. 
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Figure 6.18. Neural prediction of the crack length, for given crack center position. 
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Figure 6.19. Neural prediction of the crack length, for given crack center position. 
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Figure 6.22. Neural prediction of the crack center position, for a crack of given length. 
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Figure 6.23. Neural prediction of the crack center position, for a crack of given length. 
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Figure 6.24. Neural prediction of the crack center position, for a crack of given length. 

Table 4: Effectiveness of neural learning. Number of learning epochs and 
percentage accuracy of predictions. 

neUcase Fig. 6.19-6.21 Fig. 6.22-6.24 

x = 150 125117,21 % 74111.39 % 

X=50 127117.49% 290/1.91% 

X = 10 156/16.96 % 360/2.48 % 

The effect of using less input variables (measurements) has been examined 
by taking the case of Fig. 6.19, and reducing the number of input variables. 
Since this investigation is restricted to an academic example, we have chosen 
elements of a small number of nodes, homogeneously distributed on the upper 
boundary and starting from comer c, i.e., from node 69. The effect of using a 
reduced number of nodes on the number of iterations and on the accuracy of 
the prediction is documented in the next Table. 

Table 5: Effectiveness of using less measurements. 

nodes 48 12 6 3 

iterations 125 106 102 95 87 

accuracy 17.21 % 18.18 % 19.05 % 18.99 % 21.13 % 
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Note that the actual number of inputs for the neural network is twice the 
number of measurement nodes (due to the fact that two excitation frequencies 
have been used). Note also that for this application even one measurement point 
is sufficient for an acceptable accuracy. Nevertheless, in any case, one should 
have in mind that the given numbers are indicative and have a stochastic nature 
since the neural network application starts from randomly determined internal 
variables of the network and the result depends on several parameters (including 
the accuracy of the computer used, in which series the learning examples are 
considered during the training procedure, etc.). 
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Chapter 7 

TRANSIENT DYNAMICS 

7.1 INTRODUCTION AND LITERATURE SURVEY 

In previous Chapters, the inverse problem has been studied based on static or 
harmonic elastodynamic excitation. In these approaches, application of the re­
quired loading for testing is not always easy (static loading), the efficiency of the 
procedure for a few test loadings is not sufficient (static loading) and nonlinear 
phenomena can not taken into account (harmonic elastodynamic modelling). 
The real time elastodynamic problem, which allows for the treatment of non­
linear effects, like the unilateral contact problems in cracks, is considered in 
this Chapter for inverse analysis tasks. 

Dynamic exhitation interacts with internal defects of a structure. Therefore, 
the reflected or propagated signal (waveform) can be measured and used for the 
solution of certain inverse problems. The critical point in this approach is the 
choice of appropriate test signals and the interpretation of the measurements 
(post-processing). The large amount of case-by-case studies which have been 
published (for instance, in the area of ultrasonic inspection) shows that this 
automatization of the method is not easy. Wave matching techniques using soft 
computing may provide a solution to some of the problems, as it is shown in 
this Chapter with the case of the impact-echo problem. 

A short review of previous works in this area follows. It should be noted that 
mainly applications of neural network methods are considered here. Further 
techniques, namely genetic algorithms and dynamic programming approaches 
have not tested in this work. Moreover, several of the papers reviewed at the 
beginning of the previous Chapter have also elements which are usefull for time 
domain inverse problems. For simplicity, these references are not discussed here 
again. 

187 
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In [Pratt and Sansalone, 1992], a neural network is used for the determination 
of the probability that a flaw exists and the determination of its depth from 
the normalized spectrum response of the impact-echo analysis. AlSO-SO-II 
network is used, where the spectrum has been discretized with 150 input (nodes), 
and from the 11 output nodes one gives the flaw probability, and the other 10 
indicate the flaw depth as a percentage of the maximum plate depth (i.e., they 
are analogue outputs which indicate, respectively, that a flaw exists at a 10 per 
cent, 20 per cent of the depth, etc.). A number of 200 training patterns have 
been used in this study. 

Crack-depth determination of a vertical crack emanating from the hidden 
surface of a plate from ultrasonic backscattering data has been studied by means 
of neural networks in [Takadoya et aI., 1993]. In addition, crack position is 
considered in [Oishi et aI., 1995]. A detailed investigation of using either the 
raw dynamic response (waveform) of the plate at several points or characteristic 
features extracted from it after preprocessing (e.g., peak height, peak time etc) 
has been done. A hint that it is especially useful to utilize original dynamic 
responses as input data for the network training is given in this paper (which 
may lead to the conclusion that it is better to leave the neural network extract by 
itself the most significant features of the available signals than restricting it by 
the users' prejudices). Analogous investigations for the depth determination of 
surface-breaking cracks have been published in [Kitahara et aI., 1991], [Kitahara 
et aI., 1992]. More details and a description of related applications can be found 
in the review article [Yagawa and Okuda, 1996]. 

Ultrasonic data for complicated inverse analyses have also been treated by 
means of neural network techniques in several investigations. The determi­
nation of the size of cracks emanating from rivet holes by means of a self­
compensating ultrasonic technique has been studied by finite elements and 
neural networks in [Zgonc and Achenbach, 1996]. Ultrasonic flow classifica­
tion in weldments using neural networks has been proposed and tested in [Song 
and Schmerr(Jr.), 1991]. An ultrasonic pulse echo inversion method which uses 
a neural network classifier to identify holes in plate speciments has been pro­
posed in [Thavasimuthu et aI., 1996]. It is usually reported that neural network 
perform better than the conventional techniques. 

The method proposed in this Chapter is related to the stress matching tech­
nique of [Teh et aI., 1997] and the waveform matching approaches of, e.g., 
[Yuki and Homma, 1996]. A stress matching technique using dynamic data 
generated by ham impact is used in [Teh et aI., 1997] for the solution of the 
pile-capacity prediction problem. Waveform matching techniques are used in 
[Yuki and Homma, 1996] for the determination of the appropriate acoustic 
emmission waveform related to mode I crack extension (on acoustic emision 
AE inversion, see also [Philippidis et aI., 1998]). Wave inversion techniques 
have a long tradition in geophysics. Recently neural networks, genetic algo-
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Figure 7.1. Elastic strip with an underlying crack. Boundary element discretization. Sev­
eral cases (with or without crack, with classical or unilateral crack conditions) are considered 
hereafter. 

rithms and other global optimization techniques have been used for the solution 
of corresponding inverse problems (see, among others, [Williams and Cucun­
ski, 1995], the related works [Clark and Canas, 1995], [Homma and Miyashita, 
1995], [Zeng, 1998] and the ocean acoustics application [Stephan et aI., 1996]). 

It should be noted that a complete knowledge of the scattered field would, 
for example, make the crack detection problem more tractable (cf., [Nishimura 
et aI., 1992], [Nishimura, 1993]). The same holds true for tomography in­
spection techniques. Nevertheless, these cases are not considered here, since it 
seems unrealistic to measure all this information, especially in the area of civil 
engineering. 

7.2 NUMERICAL EXAMPLES OF DIRECT 
PROBLEMS 

Let us consider an elastic plate which is loaded on its outer, free side and it 
is supported on the opposite side, as it is shown in Fig. 7.1. On the opposite, 
hidden side of the plate a crack with possible unilateral and frictional effects is 
considered. The wave propagation problem from the free surface to the crack­
containing side, the reflection of the wave on the unilateral side and the echo 
response due to this effect is modelled by using the LCP-BEM analysis which 
has been developed in this project. In the rest of this paragraph, representative 
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results of this analysis are presented. More details and additional paramet­
ric investigations in this area have been presented in the papers [Stavroulakis 
and Antes, 1999], [Stavroulakis and Antes, 1998], [Stavroulakis et aI., 1999], 
[Stavroulakis, 1999]. 

Quadratic boundary elements, as they are described in the book of 
[Dominguez, 1993] have been used. In the discretization shown in Fig. 7.1 
a total number of 80 boundary elements has been used. Thus one has 160 
boundary nodes, from which 20 nodes lie at each horizontal (x-direction) face 
and 60 nodes at each vertical (y-direction) face. 

The elastic constants are: G=100000.0, lJ = 0.30, p = 1000.0. The time step 
is taken to be equal to b.t = 0.00675. A total of 100 time steps are presented 
here. The loading history is taken from the following table: 

Table 1: Loading history 

time 0.0 0.03 0.06 0.09 0.15 0.18 0.21 0.24 

loading 0.0 50.0 100.0 50.0 -50.0 -100.0 -50.0 0.0 

The plate dimensions are equal to lx = 2.5 and ly = 25.0. Moreover the 
crack is modeled by 19 nodes at the right hand side vertical boundary (i.e. the 
nodes with numbers 42-60 or, from the bottom end point the 22th - 40th node). 
The frictionless unilateral mechanism is assumed to work in the horizontal -x­
direction. All other points of the right hand side boundary of the plate are fixed. 
The loading is applied at the indicated points of the left hand side boundary. 

By loaded boundary one denotes the free boundary AF where the loading is 
imposed and where possible measurements are taken. The reflecting (or crack) 
boundary is the opposite part BE, which contains the possible crack. 

The displacement history of the free surface, wich is influenced from the 
existence or not of the crack and from its behaviour (Le., a classical unpressur­
ized crack or a unilateral one) is given in Figs. 7.2 - 7.4 for the various crack 
assumptions. The corresponding crack opening displacements are shown in 
Fig. 7.5 and Fig. 7.6, for a classical and for a unilateral crack, respectively. 
Finally, the displacement history (waveform) on the free (loaded) surface and 
on a crack point for the various crack assumptions but for the same loading 
history are given in Fig. 7.7 and in Fig. 7.8 respectively. The difference in the 
two plots is obvious. 
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Figure 7.2. Bilateral crack case. Horizontal displacements (ux) at loaded boundary AF. 

10 

10 15 20 25 30 35 40 .5 50 55 50 
rKldGis or ald. AF 

Figure 7.3. No crack case. Horizontal displacements (ux) at loaded boundary AF. 
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Figure 7.4. Unilateral crack case. Horizontal displacements (ux) at loaded boundary AF. 
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Figure 7.5. Bilateral crack case. Horizontal crack displacements (ux) at crack boundary BE. 
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Figure 7.6. Unilateral crack case. Horizontal crack displacements (ux) at crack boundary BE. 
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Figure 7.7. Selected comparisons of ux displacements at boundary AF 
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Figure 7.S. Selected comparison of ux displacements at crack point 
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Figure 7.9. Elastic strip considered. Several cases (with or without crack) are considered 
hereafter. 

The dual reciprocity LCP-BEM is used for the calculation of the next exam­
ple. Quadratic boundary elements are also used. The total number of boundary 
elements is 40, thus one has 80 boundary nodes, from which 10 nodes at each 
horizontal (x-direction) face and 30 nodes at each vertical (y-direction) face. 
The dual reciprocity BEM formulation is applied, with 20 internal nodes, as 
shown in Fig. 7.9. The time step is equal to !:It = 0.00675 and a total of 100 
time steps are solved. The loading history and the elastic constants are the same 
with the previous example. The plate dimensions are lx = 10.0 and ly = 25.0. 

The crack is modeled by nodes 9 nodes at the right hand side vertical boundary 
(i.e., nodes with numbers 22-30 or, from the bottom end point the 11th - 19th 
node). A frictionless unilateral mechanism is assumed in the horizontal -x­
direction. All other points of the right hand side are fixed. Loading takes place 
at the indicated points of the right hand side. 

The history of the opening displacements for a bilateral (classical) crack and 
for a unilateral crack are given in Fig. 7.10, and Fig. 7.11, respectively. Note 
that in this case multiple wave reflections can be modelled without large space 
limitations of the computer implementation, as it can be shown for instance in 
Fig. 7.12. 

More results on the dual reciprocity LCP-BEM method are presented in 
[Stavroulakis and Antes, 1999]. 
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Figure 7.10. Bilateral crack case. Horizontal displacements (ux) at crack boundary BE. 
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Figure 7.11. Unilateral crack case. Horizontal displacements (ux) at crack boundary BE. 
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Figure 7.12. Selected comparison of ux displacements at crack point 
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Figure 7.13. Crack opening history (multiplied by -1) of several crack nodes for a classical 
(dash-dotted) and a unilateral (solid) crack. 

Finally, with respect to the problem of Fig. 7.1, some results will be presented 
for the case of unilateral contact cracks with Coulomb frictional effects. The 
normal displacement (crack opening) and the tangential displacement (crack 
slip) at several nodes on the crack face of the plate are plotted in Figs. 7.13 
and 7.14, respectively. The effect of the wave propagation from the considered 
point source on the opposite, free surface is obvious from these plots. The 
complicated stick and slip behaviour on two nodes of the crack side is shown 
in the normalized plots of Figs. 7.15 and 7.16. In both cases, a unilateral 
contact crack with a Coulomb friction coefficient equal to /-L = 0.3 is assumed. 
The satisfaction of both the inequality constraints and of the complementarity 
between crack openings and tractions at all time steps is clear from these plots. 
More details on the assumptions and the interpretation of these plots are given 
in the paper [Stavroulakis et al., 1999]. Finally, for various Coulomb friction 
coefficients /-L = f.e. = 0.001, 0.2, 0.3, a comparative plot is given in Fig. 
7.17. 
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Figure 7.14. Crack slip history of several crack nodes for a classical (solid) and a unilateral 
(dash-dotted) crack. 
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Figure 7.15. Normalized crack opening and traction values. Friction coefficient equal to 0.3. 
Fifth node from the lower crack tip. Both open to contact and slip to stick transitions are shown. 
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Figure 7.16. Normalized crack opening and traction values. Friction coefficient equal to 0.3. 
First node from the lower crack tip. 
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Figure 7.17. Crack traction history. Normal (contact) and tangential (frictional) tractions for 
several friction coefficients (f.e.). Frictional slip occurs at the time step where the contact­
frictional plots separate. 
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7.3 NUMERICAL EXAMPLES OF INVERSE 
PROBLEMS 

The inverse crack identification presented in this Chapter is an extension of 
a nondestructive evaluation technique which is known as impact-echo method. 
Thus, first a simple comparison of classical and unilateral impact-echo analysis 
is given. Then, more complicated cases of impact-echo modelling and results 
of the corresponding neural identification are presented. 

7.3.1 
7.3.1.1 

CLASSICAL AND UNILATERAL IMPACT-ECHO 
OUTLINE OF THE METHOD 

A class of local nondestructive testing and evaluation methods (NDT, NDE) 
is based on the physical principle of reflection of dynamical signals from inter­
nal obstacles (e.g., inclusions, cracks, delaminations). Both signal application 
and measurement are performed on an accessible, external surface of a struc­
ture. The impact-echo is based on the use of elastic waves produced through a 
mechanical impact (e.g., a hammer). Since, in practice, postprocessing of the 
echos leads to the determination of the excited eigenfrequencies of some parts 
of the structure, some people insist that this method should not be distinguished 
from what was previously known as the resonance method. Other affiliated 
NDT methods are the ultrasonic pulse echo method, which uses sound waves, 
and the radar echo method, which is based on electromagnetic waves. 

Several applications of the impact-echo method have been recently reported. 
Among them, the measurement of the thickness of remote concrete parts, the 
identification of delaminations in concrete slabs (e.g., in road and aeroport 
pavements), of delaminations between concrete and reinforcement, of voits 
in grouted tendon ducts of post-tensioned structures, of concrete flaws and 
honeycombing in concrete and of delaminations in mine shafts and tunnel liners. 
More details and further references can be found in the recent monograph by 
[Sansalone and Streett, 1997]. 

To the author's best knowledge, the effect of unilateraly working subsurface 
cracks or delaminations has not been addressed in previous publications of this 
field (for a related work, see [Hirose, 1994]). 

Let us see the classical procedure of a plate depth determination using the 
impact-echo method. The method consists of the following steps: 

1. Application of an impact generated dynamical loading 

2. Measurement of the echo (waveform) from underlying interfaces, cracks 
etc. 

3. Transformation in frequency domain (fast Fourier transform, FFT) and post­
processing (the simple way is based on the resonance peaks). 
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Figure 7.18. Wave-crack interaction principles which are used in impact-echo testing. Solid 
and dashed wave paths demonstrate phase inversion (due to wave reflections). 

One notes that the method is based on the quantitatively different reflections 
characteristics of a free (resp. a fixed) interface, or, generally, of an interface 
with a layer of a higher (resp. a lower) impedance (see the schematic inter­
pretation of Fig. 7.18 a,b). One also notes that (local) crack or delamination 
identification follows the same principle (see Fig. 7.18 c). 

Taking into account unilateral effects along subsurface cracks or interfaces, 
introduces the following difficulties into the previously outlined impact-echo 
method. 

1. The echo is quantitatively and qualitatively different from the classical case. 
In fact, it depends on the loading signal. 

2. The usual frequency domain based postprocessing is usually no more ap-
plicable. 

First attempts to use neural network techniques for the postprocessing of classi­
cal (resp. unilateral) impact-echo waveforms can be found in [Pratt and Sansa­
lone, 1992] (see also the next Sections). 

7.3.1.2 NUMERICAL COMPARISON 
Indicative numerical results are included here to demonstrate the effect of 

unilateral contact problems on the echo waveforms and their impact on the 
classical FFT-based postprocessing. 

Let us assume an elastic plate (see Fig. 7.18 a or b) with the following elastic 
material data: G = 100000.0, v = 0.30 and p = 1000.0. A zig-zag dynamic 
point loading of one period with amplitude equal to 100.0 and period equal to 
0.24 is applied in the vertical direction on the upper surface of the plate. All 
data are in compatible units. 

Let us first assume a plate with a depth equal to 1.5 with a classical crack 
(Fig. 7.18 a) and without a crack (Fig. 7 .18 b). This is the classical case with 
no contact effects at the crack side. Moreover, the length of the crack is equal 
to lc = 5.833 and the center of the crack lies exactly below the point of loading. 
For a time step equal to bot = 0.02025, a total of 100 time steps is analysed. 
The vertical displacements of the loading point (echo waveform) along with its 
fast Fourier transform (FFT) are plotted in Fig. 7.19. 
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Using the classical impact-echo principle, the depth of the plate is estimated 
from the resonance peaks of Fig. 7.19 b as follows (see [5] for more details): 

(7.1) 

where dest is the estimated depth, cp = p(1!t)0~2V) (here cp = 18.71) is 

the P-wave velocity in the elastic body, ir is the resonance frequency (to be 
read from the FFT plot) and .A is a multiplication factor which counts for the 
path of the wave propagation. Here.A = 2 for the plate with a crack (the case 
usually met in impact-echo technique [Sansalone and Streett, 1997], Fig. 7.18 
a) and .A = 4 for the no-crack case (Fig. 7.18 b). Thus, one gets the following 
estimates: for the plate with a crack dest = 2~6:l2 = 1.46 and for the no-crack 

case dest = 4~2:~6 = 1.58, which compare satisfactorily with the real value 
d = 1.50. Note that neither the wave load nor the additional correction factors 
which are used in more refined applications are choosen in an optimal way here. 

Let us consider now different depths of the plate and the following two crack 
assumptions: a classical crack (as in the previous example) and a crack with 
unilateral contact effects. For 100 time steps with I:lt = 0.00675, the corre­
sponding calculated histories of vertical displacements at the upper surface are 
plotted in Fig. 7.20. One observes the drastic influence of the unilateral con­
tact effects. Moreover, in the classical crack case, the FFT-based impact-echo 
analysis provides us with some crude estimates of the plate'S depth, although 
the loading is not appropriate for this application (the pulse is too long so that 
applied and echo signals overlap) and the number of time steps is restricted. In 
particular one has: for the case d = 1.0, one finds (from Fig. 3a) ir ~ 9Hz, 
thus dest ~ 1;~791 = 1.03, for d = 2.0, ir ~ 4.0H z and dest ~ 2.34 and for 
d = 3.0, ir ~ 2.5H z and dest ~ 3.7. For the crack with unilateral contact 
effects, no such information can be provided by the FFT (see, Fig. 7.20 b). 

7.3.2 IMPACT-ECHO AND NEURAL IDENTIFICATION 
One example of unilateral interlayer crack identification by means of a 

neural network based processing of the impact echo signal is presented. A 
two-dimensional model of an elastic layer which contains a subsurface crack, 
is shown in Fig.7.21 (a). The elastic material data of the plate is taken as 
G = 100000.0, v = 0.30 and p = 1000.0. With a time step equal to 
I:lt = 0.00675, a zig-zag dynamical pulse of one period duration with pe­
riod equal to 0.24 and peak values equal to 100 is considered. The impact-echo 
response, i.e., the horizontal displacements of the loading point at the external 
surface of the plate is given in Fig. 7.21 (b) for two plate thicknesses d = 1.0 
and d = 2.0 and for the assumption of a classical (no contact) crack (solid 
lines), a frictionless contact crack (dashed lines) and a frictional contact crack 
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Figure 7.19. Echo waveforms from a fixed plate with and without a classical sublayer crack 
and corresponding frequency analysis. 
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Figure 7.20. Echo waveforms from a classical and a unilateral sublayer crack, for plates of 
different thicknesses and corresponding frequency analysis. 

(dotted lines, with Coulomb friction coefficient I-" = 0.3). The thickness of the 
plate and the nature of the contact condition at the crack face are considered 
as identification parameters. The impact-echo responses for several cases are 
normalized in the (0 -1.0) range and are used as input parameters for the neural 
network model. All combinations between Zl = d = 1.0, 1.5,2.0 and 2.5 and 
between a classical crack case (with parameter Z2 = 0.1010), a frictionless 
unilateral crack (Z2 = 0.2020) and a frictional unilateral crack with I-" = 0.3 ( 
Z2 = 0.3030) are used for the learning phase of the neural network. The raw 
impact echo results and the normalized ones, which are used for the learning 
phase of the neural network, are shown in Fig. 7.22. 

A 100 - 5 - 5 - 2 network with logarithmic activation functions has been 
used. For the testing, the plate thickness values d = 1.25, 1.75 and 2.25 are 
taken in combination with the previously given analogue representation of the 
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Figure 7.21. (a) Plate with a subsurface crack and (b) impact-echo for two plate thicknesses 
and for classical and unilateral cracks. 
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Figure 7.22. (a) Raw impact-echo data. 

100 120 

contact nature. For a typical case, the learning to a mean least square error 
equal to 0.001 takes about 5800 epochs and leads to the results given in Table 2. 
More technical details on this technique to learn a set of complete data series by 
a back-propagation neural network can be found in [Stavroulakis and Abdalla. 
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Figure 7.22. (b) Normalized impact-echo data, as they are used for the training of the neural 
network. 

1994], where this technique has been applied for the processing of experimental 
data of semi-rigid steel connections. 

Table 2: Impact-echo neural identification (normalized valued multiplied by 
10). 
Thickness of the plate d (i.e., first element of unknown vector z). R denotes 
real values, P denotes predicted values. 

R 1.499 2.098 2.698 1.499 2.098 2.698 1.499 2.098 2.698 
P 1.418 1.566 2.567 1.388 2.222 2.495 1.359 2.322 2.339 

Contact interface status (i.e., second element of vector z). R denotes real 
values, P denotes predicted values. 

R .10 1 .101 .101 .202 .202 .202 .303 .303 .303 

P .100 .102 .098 .209 .179 .235 .265 .313 .298 

Several neural network approaches for the interpretation of sonic backscat­
tering data and the inverse crack identification have recently been published, 
among others in [Takadoya et aI., 1993], [Oishi et aI., 1995], [Zgonc and Achen­
bach, 1996]. It seems that their potential for practical applications is significant. 
The incorporation of nonlinear effects, e.g., of unilateral and friction effects on 
the crack, makes the number of unknowns to be found larger. Accordingly, the 
spectrum of applications is enlarged. One should note that for these nonlinear 
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dynamical problems, classical frequency analysis techniques are inappropriate. 
Moreover, due to the tendency of these systems to have a very complicated 
dynamical response for large time histories (even chaos may appear), short 
dynamic responses should be analyzed. For this purpose and at least for the 
development phase, the combination of computational BEM or FEM modeling 
and neural inverse analysis seems to be ideal. 

Further results of neural processing of impact-echo data are presented now. 
One of the advantages of this approach is that all impact-echo data can be first 
produced from the mechanical problem. Then, the inverse problem is done 
within the neural network postprocessing ofthe data. No direct coupling ofthe 
two phases is required. Thus, different computer programs can be used for the 
two phases. 

A two-dimensional elastic plate under plain-stress conditions is studied. The 
configuration of the plate is shown in Fig. 7.1 a. At a part OR of the free 
boundary AF of the plate a distributed time dependent impact-like loading is 
considered. The opposite side (parts BC and DE of size BE) is considered to 
be fixed at a rigid support. A potential subsurface crack is assumed at the part 
CD of the side BE. Either a classical, bilaterally working, unpressurized crack 
is assumed, which is modelled by means of free, unloaded boundary conditions 
at CD, or a unilateral crack with zero initial gap is considered. In the latter case, 
the boundary conditions given in Chapter two hold along the crack boundary. 

An elastic material with data G = 100000.0, v = 0.30 and p = 1000.0 is 
assumed. All variables are, as previously, in compatible units. A plate with 
depthequaltodis assumed ( d = 1.5 or2.5 in the examples presented here). The 
spatial boundary element discretization of the problem with quadratic boundary 
elements is shown in Fig. 7.1 b. A finite part of the plate, with length equal to 
25.00 is discretized, as it is shown in Fig. 7.1 b, although the total time interval 
which is considered does not allow for reflections from the artificial boundaries 
AB and ED (which are assumed to be free, unloaded boundaries). A total of 80 
quadratic boundary elements, i.e., 160 boundary nodes have been used, where 
20 ad 60 nodes are taken at each horizontal (i.e., AB or EF) or vertical (i.e., BE 
or AF) face, respectively. 

The impact loading has a zig-zag form, is of one period duration, and takes 
the values given previously in Table 1. 

Moreover, in the given BEM discretization the extemalloading is applied as 
a boundary traction on two consequtive boundary elements which model the 
part OR of the plate's boundary. The position of the loading is determined by 
the length of segments AR=12.08 and AO=12.91. 

The length (lc) and the position of the crack (with the y-coordinate at its 
center being equal to Yc) vary in the several examples which are presented in 
the sequel. The echo signal, i.e., the dynamic response of the plate with the 
crack, is measured at several points of the free, accessible side AF. It is assumed 
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that the surface displacement response, in either the Ox or in the Oy direction, 
can be measured. Usually, the response of the center of the loaded part GH is 
considered (i.e., the point with y-coordinate equal to 12.495). This case would 
correspond to an excitation device which can also be used for the response 
measurement. More measurement points are considered in the next section. 

With a time step D..t = 0.02025, a total of 100 time steps is analysed. Note 
that, in order to ensure numerical stability of the used time-domain BEM, the 

ratio 6.LCp must be approximately equal to 1.0, where le is the length of the 
used boundary elements and cp (resp. cs ) is the compressive (resp. shear) wave 
velocity of the medium (in this example, cp = 18.71 and Cs = 10.00; see among 
others, [Antes, 1988], [Dominguez, 1993]). The latter requirement poses 
certain restrictions on the choice of the space and on the time discretization. This 
restriction could cause problems if an automatic space discretization scheme 
is adopted. For instance, this case appears during an error optimization based 
inverse analysis procedure, where the solution of the problem with a new crack 
position and, thus, a new discretization is required within each iteration step. In 
the neural network method of this paper, this restriction does not cause problems 
since one chooses in advance, off line, the number of the different (learning) 
examples which have to be solved. 

A number of impact-echo results which have been calculated by means of 
the previously described model will be presented. The choosen cases try to 
demonstrate the influence of the unilateral contact effects on the impact-echo 
analysis. Moreover, it will be seen that the existence and the position of the 
hidden crack influence the impact-echo results, which, therefore, can be used 
for inverse crack analysis purposes, as it will be presented in the next section. 
All responses in this section are measured at the center of the area where the 
load is applied, i.e., at a point on side AF with y-coordinate equal to 12.495. 

Let us consider a crack with length equal to lc = 7.50 and with its center 
at Yc = 10.00. The plate has a depth of d = 2.50. The impact loading 
of Table 1 is considered, applied on segment GH and in the horizontal (Ox) 
direction. The effect of the crack and, moreover, the effect of the unilateral 
contact assumption on the impact-echo results is shown in Fig. 7.23. The raw 
response displacement data in the horizontal (Ox) direction are shown in Fig. 
7.23a, while in Fig. 7.23 b the difference between the response of the plate with 
the crack and the one of the same plate without a crack is plotted. Here, the 
solid line a corresponds to the plate without a crack, the dash-dotted line b is 
the response of the plate with a classical crack and the dotted line c (resp. the 
dashed line d) corresponds to the unilateral contact crack case (with a friction 
coefficient f.t = 0.001 and f.t = 0.30 for lines c and d, respectively). 

Here, one observes that the position of the first peak in the difference of 
the signals, which is sometimes used as identification feature, does not change 
between the bilateral and the unilateral crack, although the magnitude of the 
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Figure 7.23. Impact-echo response: Influence of the unilateral mechanism. (a) Raw waveform 
data and (b) difference between the examined case and the response of the same plate without a 
crack. 
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Figure 7.24. Impact-echo response: Influence of the crack position. 

peak is significantly reduced (see lines band c,d in Fig. 7.23 b). Finally, the 
friction coefficient does not influence the response (cf., lines c and d in Figs 
7.23a,b), as it would have been expected from the kind of the applied loading 
in connection with the position of the scatterer. 

If the position of the loading is not in front of the crack's center, for instance 
if the applied loading is at the same y-coordinate with the tip of the crack, then 
the response pattern is influenced by several wave propagation effects and its 
nature can not be estimated easily using simple impact-echo arguments. In Fig. 
7.24, the responses of two crack positions are examined. Both cracks have a 
length equal to lc = 5.82. The depth of the plate is here d = 1.50. The center 
of the crack and the crack mechanic assumption are: 

for the case a : 

for the case b : 
for the case c : 
for the case d : 

Yc = 9.165 
Yc = 9.165 
Yc = 11.655 
Yc = 11.655 

with unilateral frictional crack, 
with classical, bilateral crack, 
with unilateral frictional crack, and 
with classical, bilateral crack. 

In all cases, the frictional coefficient is equal to /-L = 0.30. Moreover, for 
comparison, the response of the plate without a crack is plotted by a solid line 
in Fig. 7.24. 
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Figure 7.25. Impact-echo response. Difference between the examined case and the response 
of the same plate without a crack. (a) Classical and (b) unilateral crack, 
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Figure 7.26. Impact-echo response: Influence of the crack size. (a) Raw waveform data and 
(b) difference between the examined case and the response of the same plate without a crack. 
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One may observe that in the cases a and b, where the measurement point is 
higher than the upper end of the crack, there exists an influence of the crack on 
the dynamic response, although the kind of the crack (i.e., classical or bilateral) 
does not significantly influence the response at the first time steps (i.e., the lines 
a and b do not differ very much before the 65-th time step). 

This effect is examined in more details in Figs. 7.25 a,b. Here, the difference 
between the response of the plate with and without a crack is plotted. A crack 
of length lc = 5.82 is moved so that its center lies at the position: 

for the case a: Yc = 9.165, 
forthe case b: Yc = 11.655, 
for the case c: Yc = 14.165, and 
for the case d: Yc = 15.83. 

Results of a classical crack (resp., a unilateral crack with J1, = 0.30) are given 
in Fig. 7.25 a (resp., in Fig. 7.25 b). It is interesting to observe here that the 
results of cases b and c can are not very different in the classical, bilateral crack 
assumption (see Fig. 7.25 a), while the more realistic unilateral contact crack 
results to different signals (see Fig. 7.25 b). 

The influence of the crack size is finally examined in Fig. 7.26 . The center 
of the crack is kept fixed at Yc = 12.495 for this investigation and the plate's 
depth is d = 1.50. The examined cases are as follows: 

case a: lc = 0.0 a plate without a crack, 
case b: lc = 5.83 with a unilateral crack, 
case c: lc = 4.164 with a unilateral crack, 
case d: lc = 5.83 with a classical crack, and 
case e: lc = 4.164 with a classical crack. 

The raw waveforms are given in Fig. 7.26 a and the differences from the 
no-crack case are plotted in Fig. 7.26 b. 

From Figs. 7.23 to 7.26 one may conclude that the existence and the prop­
erties of a hidden crack influence the impact-echo response. More information 
can be extracted if one considers measurements from several points, as it will 
be demonstrated in the next section in connection with the neural study of the 
inverse, crack identification problem. 

Concerning the computational efficiency of the proposed scheme one should 
mention that each solution (100 time steps) takes about one hour on a IBMIRISK 
6000 workstation. Due to the kind of the BEM implementation used, most of the 
time is being spent on saving and reading the influence matrices of all previous 
steps. This high demand on storage space prevented us, till now, from testing 
the procedure on a central, more powerful computer system. 

Some results of inverse crack identification problems using the previously 
calculated inpact-echo waveforms and the neural network method will be pre­
sented. 
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To begin with, let us consider the impact echo data of a plate with thickness 
equal to d = 2.5 and a possible crack of length lc = 7.50 placed at various 
positions in the hidden boundary of the plate. Consider the plate (a) without 
a crack, (b) with a unilateral crack at Xc = 10.00, (c) with a unilateral crack 
at Xc = 10.833, (d,e) the same crack positions as in (b) and (c), but with the 
classical, bilateral crack assumption and (f,g) the same two cracks as previously 
with a unilateral frictional effect and friction coefficient equal to f-L = 0.3. All 
these responses, at the same position where the load is applied, are shown in 
Fig. 7.27 a. The normalized data are shown in Fig. 7.27 b. The values of these 
curves, taken at several time instants (time steps) are used as input, training 
data, for the neural network. One observes, in connection with the results and 
the discussion of the previous section, that these curves can be correlated with 
the existence and the position of the crack. This relation is learned by the neural 
network. 

Let us consider first a crack of length lc = 7.50 at the hidden surface of 
a plate with depth d = 2.5. The seven different positions of the crack are 
shown in the first two lines of Table 3. Furthermore, a neural network with 
two hidden layers, each one of 10 nodes, is trained. The cases La, Lc, I.e and 
Lg are used for the training, while the remaining cases are used for testing the 
corresponding networks. Moreover, the case of one measurement (at position 
12.495), three measurements (at positions 10.833,12.495 and 14.1667) and five 
measurements (at the positions 9.1667, 10.833, 12.495, 14.1667 and 15.833) 
are considered. On the assumption that all 100 time steps are used as inputs 
for the neural networks, by concatenating the corresponding data one gets for 
the one measurement case 100 input nodes, for three measurement points 300 
nodes and for five measurements 500 nodes. The predictions of the arising 
neural networks, by using the classical, bilateral crack assumptions and the 
above described impact-echo results are given as Net-I, Net-II and Net-III, 
respectively, in Table 3. The case with three measurement points, for unilateral 
cracks, provides the predictions given as Net-II-u in Table 3. 

All above results have been obtained by initializing the network using a 
random procedure, with a momentum value equal to 0.95 and a stopping (error) 
accuracy equal to 0.001. Convergence has been achieved in 120-200 epochs 
(iterations). A serial modelling ofthe back-propagation neural network is used 
for the numerical results. The Neural Network Toolbox of MATLAB has been 
applied. 
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Table 3: Data set I. Different crack positions (xc)for a crack oflength lc = 7.50 
at the hidden surface of a plate with depth d = 2.5. Neural predictions. 

case La I.b I.e Ld I.e I.f I.g 

Xc 10.00 10.833 11.667 12.500 13.333 14.167 15.00 

Net-I 10.4693 15.0500 12.2041 12.5611 12.5945 12.2742 14.9266 
Net-II 10.8296 11.3567 11.7070 11.9005 12.7313 14.1258 15.0300 
Net-III 10.7462 11.8105 12.3109 12.8847 13.4352 14.0825 14.6797 
Net-II-u 10.8127 10.9597 11.8296 12.4077 12.301 14.2526 14.96 

In general, the efficiency of the neural network prediction is enhanced if one 
uses, simultaneously, echo measurements from different points. This is docu­
mented in Table 4, where the percentage errors in the predictions for bilateral 
and unilateral cracks and for one, three, or five measurement points are given. 
One observes that the cases (columns) l.a, l.c, l.e and l.g have been used for 
the training, thus the given errors are the errors at the end of the learning phase. 
Moreover, it seems that a neural network with two hidden layers and 10 nodes in 
each hidden layer performs better for the case with three measurement points. 

Table 4: Data set l. Different crack positions (xc) for a crack of length lc = 7.50 
at the hidden surface of a plate with depth d = 2.5. Error in neural predictions. 

case La I.b I.e I.d I.e I.f Lg 

Net-I(l) 4.69 38.94 4.61 0.50 5.55 13.36 0.47 
Net-II(3) 8.41 4.85 0.34 4.79 4.51 0.27 0.20 

Net-III(5) 7.46 9.03 5.51 3.09 0.77 0.59 2.12 
Net-I-u(l) 2.91 36.31 5.43 5.08 1.61 13.36 4.38 
Net-II-u(3) 4.53 1.17 5.68 0.74 3.85 0.61 2.43 
Net-III-u(5) 6.84 7.21 0.33 12.5 1.94 2.25 4.85 

Analogous results have been obtained for the problem of finding the position 
of the crack and for different depths (between d = 1.5 to d = 3.0). The effect 
of using different neural network configurations (between one and two hidden 
layers and for 5 to 150 nodes in each hidden layer) has been examined. For 
more than 50 nodes in each internal layer and for both the cases with one and 
two hidden layers, the results show comparable accuracy. 

The next problem is the determination of the crack size lc for a crack which 
center lies directly behind the excitation point (i.e., Xc = 12.50). Four different 
cases have been studied, where for the training the three cases (ll.a, II.c, ll.d in 
Table 5 or 6) are taken and for the testing of the accuracy one uses the predictions 
of the remaining case Il.b. The different crack length sizes can be found in the 
second line of Table 5 and 6. Note that the crack depth is d = 1.5 in this 
case. The number of epochs required for the training, up to a least squared 
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error 0.001, for various networks are shown in Table 5 and 6. Table 4 concerns 
networks with one hidden layer and different number of nodes, as it is shown in 
the different lines of the Table. Networks with two hidden layers are considered 
in Table 6. 

One should observe that, despite the very limited number of examples which 
have been considered here, some acceptable predictions can be extracted from 
the proposed neural network. 

Table 5: Data set II. Different crack lengths (xc)for a crack position Xc = 12.50 
at the hidden surface of a plate with depth d = 1.5. Error in neural predictions. 

network epochs case case case case 
x ILa n.b n.c n.d 

5 152 2.2 39.5 0.79 15.67 
10 126 1.39 19.52 8.53 7.91 
20 104 2.54 19.7 2.58 14.68 
30 91 1.89 10.72 7.08 10.02 
40 92 2.85 21.28 3.52 12.36 
50 86 1.79 12.2 7.56 9.55 
60 81 1.33 10.91 7.88 9.14 
70 82 1.25 11.13 6.92 11.18 
80 73 2.17 9.02 8.51 8.06 
90 82 1.13 10.88 5.2 14.20 
100 74 0.71 5.53 8.43 8.18 

Table 6: Data set II. Different crack lengths (xc )for a crack position Xc = 12.50 
at the hidden surface of a plate with depth d = 1.5. Error in neural predictions. 

network epochs case case case case 
x-x ILa n.b n.c ILd 

5 135 1.99 26.3 6.84 10.81 
10 141 2.2 19.2 7.15 4.25 
20 123 2.52 5.08 9.32 0.08 
30 103 3.36 16.67 6.13 9.12 
40 93 1.06 12.64 4.51 14.70 
50 101 0.23 13.4 7.15 12.89 
60 93 0.35 26.5 5.33 13.97 
70 87 1.03 3.3 3.63 15.14 
80 81 3.86 15.82 2.42 8.95 
90 87 0.88 1.39 0.87 17.34 
100 93 3.28 4.97 3.56 11.49 

The first attempt of the author to extend the neural network method for the 
simultaneous detection of both size and position of a crack in the previously 
examined example has not been very successful. The problem encountered is 
that the used back-propagation neural networks learn and reproduce the given 
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learning examples with every required accuracy, but they are unable to general­
ize from these results and give good predictions for the unknown, test examples. 
This phenomenon is known as 'overfitting' or 'network saturation' in the neu­
ral network literature. One possible remedy whould be to monitor the network 
performance and to stop it at a point which balances between learning accuracy 
and prediction accuracy. This task is left open for future investigations. 
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